Accurate somatic small variant discovery for multiple sequencing technologies with DeepSomatic

https://www.profitableratecpm.com/f4ffsdxe?key=39b1ebce72f3758345b2155c98e6709c
  • Stratton, MR, Campbell, PJ and Futreal, PA The cancer genome. Nature 458719-724 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Alexandrov, LB et al. The repertoire of mutational signatures in human cancer. Nature 57894-101 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Alexandrov, LB & Stratton, MR Mutational signatures: patterns of somatic mutations hidden in cancer genomes. Curr. Notice. Broom. Dev. 2452-60 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Perera-Bel, J. et al. From somatic variants to precision oncology: evidence-based reporting on treatment options in molecular tumor boards. Genome Med. 1018 (2018).

    Article PubMed PubMed Central Google Scholar

  • Garcia-Prieto, CA, Martínez-Jiménez, F., Valencia, A. and Porta-Pardo, E. Detection of oncogenic and clinically actionable mutations in cancer genomes critically depends on variant calling tools. Bioinformatics 383181-3191 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Farswan, A. et al. Models of branched clonal evolution predominate in the mutational landscape of multiple myeloma. Am. J. Cancer Res. 115659-5679 (2021).

    CAS PubMed PubMed Central Google Scholar

  • Li, W. & Freudenberg, J. Mappability and reading length. In front. Broom. 5381 (2014).

    Article PubMed PubMed Central Google Scholar

  • Larson, DE et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 28311-317 (2012).

    Article CAS PubMed Google Scholar

  • Koboldt, DC et al. VarScan 2: Discovery of somatic mutations and copy number alterations in cancer by exome sequencing. Genome Res. 22568-576 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  • Wilm, A. et al. LoFreq: an ultra-sensitive, sequence quality-aware variant caller for uncovering cell population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 4011189-11201 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  • Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnology. 31213-219 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  • Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15591-594 (2018).

    Article CAS PubMed Google Scholar

  • Sahraeian, PME et al. Deep convolutional neural networks for accurate detection of somatic mutations. Nat. Common. 101041 (2019).

    Article PubMed PubMed Central Google Scholar

  • Krishnamahari, K. et al. Accurate somatic variant detection using weakly supervised deep learning. Nat. Common. 134248 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Musunuri, RL et al. Lancet2: Improved and accelerated somatic variant calling with joint multi-sample local assembly graphs. Preprint at bioRxiv https://doi.org/10.1101/2025.02.18.638852 (2025).

  • Fang, LT et al. Establish community reference samples, data, and call sets to evaluate cancer mutation detection using whole genome sequencing. Nat. Biotechnology. 391151-1160 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Logsdon, GA, Vollger, MR & Eichler, EE Long-read human genome sequencing and its applications. Nat. Reverend Genet. 21597-614 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Damaraju, N., Miller, AL and Miller, DE Long-read DNA and RNA sequencing to streamline clinical genetic testing and reduce barriers to comprehensive genetic testing. J.Appl. Laboratory. Med. 9138-150 (2024).

    Article PubMed Google Scholar

  • Kolesnikov, A. et al. Local read haplot allows accurate calls of small long read variants. Nat. Common. 155907 (2024).

    Article CAS PubMed PubMed Central Google Scholar

  • Zheng, Z. et al. Symphonizing pileup and full alignment for deep learning-based long-read variant calls. Nat. Calculate. Sci. 2797-803 (2022).

    Article PubMed Google Scholar

  • Popeline, R. et al. A universal caller SNP and small-indel variants using deep neural networks. Nat. Biotechnology. 36983-987 (2018).

    Article CAS PubMed Google Scholar

  • Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long reads. Nat. Methods 181322-1332 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Kolmogorov, M. et al. Scalable nanopore sequencing of the human genome provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 201483-1492 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Zheng, Z. et al. ClairS: a deep learning method for long-read small somatic variant calls. Preprint at bioRxiv https://doi.org/10.1101/2023.08.17.553778 (2023).

  • Kolmogorov, M. & Gokce, A. CASTLE-Panel/castle. Datasets. GitHub https://github.com/CASTLE-Panel/castle (2025).

  • Keskus, AG et al. Severus detects somatic structural variations and complex rearrangements in cancer genomes using long-read sequencing. Nat. Biotechnology. https://doi.org/10.1038/s41587-025-02618-8 (2025)

  • Diaz-Gay, M. et al. Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment. Bioinformatics 39btad756 (2023).

    Article PubMed PubMed Central Google Scholar

  • Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware BWA-MEM acceleration for multi-core systems. In Proc. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314-324 (IEEE, 2019).

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 343094-3100 (2018).

    Article CAS PubMed PubMed Central Google Scholar

  • Bergstrom, EN et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC genomics 20685 (2019).

    Article PubMed PubMed Central Google Scholar

  • Lansdon, LA et al. Successful classification of genetic subtypes of clinical pediatric leukemia via detection of structural variants using HiFi long-read sequencing. Preprint at medRxiv https://doi.org/10.1101/2024.11.05.24316078 (2024).

  • Kim, R. rkimoakbioinformatics/oakvar. Source code. GitHub https://github.com/rkimoakbioinformatics/oakvar/ (2025).

  • Steiert, TA et al. A critical spotlight on FFPE-DNA sequencing paradigms. Nucleic Acids Res. 517143-7162 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Xiao, W. et al. Towards best practices in detecting cancer mutations with whole genome and whole exome sequencing. Nat. Biotechnology. 391141-1150 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Koboldt, DC Best Practices for Variant Calling in Clinical Sequencing. Genome Med. 1291 (2020).

    Article PubMed PubMed Central Google Scholar

  • Keskus, AG et al. Severus detects somatic structural variations and complex rearrangements in cancer genomes using long-read sequencing. Nat. Biotechnology. https://doi.org/10.1038/s41587-025-02618-8 (2025).

  • Cohen, ASA et al. Genomic answers for children: dynamic analyzes of more than 1,000 pediatric rare disease genomes. Broom. Med. 241336-1348 (2022).

    Article CAS PubMed Google Scholar

  • Monlong, J., Lorig-Roach, R., Meredith, M. and Negi, S. nanoporegenomics/wambam. Source code. GitHub https://github.com/nanoporegenomics/wambam (2025).

  • Bushnell, B. BioInfoTools/BBMap. Source code. GitHub https://github.com/BioInfoTools/BBMap/blob/master/sh/reformat.sh (2025).

  • Baid, G. et al. A large sequence dataset of reference samples for benchmarking and development. Preprint at bioRxiv https://doi.org/10.1101/2020.12.11.422022 (2020).

  • An integrated map of genetic variation in 1,092 human genomes. Nature 49156-65 (2012).

  • Lake, JA & Sequencing (CoLoRS), C. of the LR Consortium Long Read Sequencing Database (CoLoRSdb). Zenodo https://doi.org/10.5281/zenodo.11511513 (2024).

  • Chen, N.C. et al. Improving variant calling using population data and deep learning. BMC Bioinf. 24197 (2023).

    CAS article Google Scholar

  • Sherry, ST et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29308-311 (2001).

    Article CAS PubMed PubMed Central Google Scholar

  • Karczewski, KJ et al. The spectrum of mutational constraints quantified from variation in 141,456 humans. Nature 581434-443 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Auton, A. et al. A global reference for human genetic variation. Nature 52668-74 (2015).

    Article PubMed Google Scholar

  • Szegedy, C. et al. Rethinking the initial architecture of computer vision. Proc. IEEE Conference on Computer Vision and Pattern Recognition 2818-2826 (2016); https://doi.org/10.1109/CVPR.2016.308

  • Popeline, R. et al. google/deepvariant. Google (2025). Source code. GitHub https://github.com/google/deepvariant (2025).

  • Kingma, DP & Ba, J. ADAM: a stochastic optimization method. Preprint at https://arxiv.org/abs/1412.6980 (2017).

  • Ahmad, T. KolmogorovLab/Wakhan. Source code. GitHub https://github.com/KolmogorovLab/Wakhan (2025).

  • Bergstrom, EN et al. AlexandrovLab/SigProfilerAssignment. Source code. GitHub https://github.com/AlexandrovLab/SigProfilerAssignment (2025).

  • Diaz-Gay, M. et al. AlexandrovLab/SigProfilerMatrixGenerator. Source code. GitHub https://github.com/AlexandrovLab/SigProfilerMatrixGenerator (2025).

  • CASTLE Panel: Long-Read Assessment of Cancer Standards. Datasets. Sequence Playback Archive https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1086849 (2025).

  • Childhood Cancer Data Initiative (CCDI): Pediatric Cancer Comprehensive Genomic Sequencing (CMRI/KUCC) datasets. dbGAP https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002529.v2.p1 (2025).

  • DeepSomatic: Accurate discovery of small somatic variants for multiple sequencing technologies. Datasets. dbGAP https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs004188.v1.p1 (2025).

  • Park, J. Supporting data for: Accurate discovery of small somatic variants for multiple sequencing technologies with DeepSomatic. Zenodo https://doi.org/10.5281/zenodo.16595168 (2025).

  • Park, J. et al. google/deepsomatics. Google (2025). Source code. GitHub https://github.com/google/deepsomatic (2025).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button