World News

Comprehensive taxonomic identification of microbial species in metagenomic data using SingleM and Sandpiper

https://www.profitableratecpm.com/f4ffsdxe?key=39b1ebce72f3758345b2155c98e6709c
  • Meyer, F. et al. Critical Assessment of Metagenome Interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poussin, C. et al. Crowdsourced benchmarking of taxonomic metagenome profilers: lessons learned from the sbv IMPROVER Microbiomics challenge. BMC Genomics 23, 624 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sczyrba, A. et al. Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanco-Míguez, A. et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 41, 1633–1644 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irber, L. et al. sourmash v4: a multitool to quickly search, compare, and analyze genomic and metagenomic data sets. J. Open Source Softw. 9, 6830 (2024).

    Google Scholar 

  • Kim, J. & Steinegger, M. Metabuli: sensitive and specific metagenomic classification via joint analysis of amino acid and DNA. Nat. Methods 21, 971–973 (2024).

    CAS 
    PubMed 

    Google Scholar 

  • Ruscheweyh, H.-J. et al. Cultivation-independent genomes greatly expand taxonomic-profiling capabilities of mOTUs across various environments. Microbiome 10, 212 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Z. et al. Removal of false positives in metagenomics-based taxonomy profiling via targeting type IIB restriction sites. Nat. Commun. 14, 5321 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kodama, Y., Shumway, M., Leinonen, R. & International Nucleotide Sequence Database Collaboration The Sequence Read Archive: explosive growth of sequencing data. Nucleic Acids Res. 40, D54–D56 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Martiny, H.-M., Munk, P., Brinch, C., Aarestrup, F. M. & Petersen, T. N. A curated data resource of 214K metagenomes for characterization of the global antimicrobial resistome. PLoS Biol. 20, e3001792 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, T. S. B. et al. SPIRE: a searchable, planetary-scale microbiome resource. Nucleic Acids Res. 52, D777–D783 (2023).

    PubMed Central 

    Google Scholar 

  • Ma, B. et al. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat. Commun. 14, 7318 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oren, A. & Garrity, G. M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71, 005056 (2021).

    Google Scholar 

  • Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dmitrijeva, M. et al. The mOTUs online database provides web-accessible genomic context to taxonomic profiling of microbial communities. Nucleic Acids Res. 53, D797–D805 (2025).

    PubMed 

    Google Scholar 

  • Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Ma, S. et al. A microbial gene catalog of anaerobic digestion from full-scale biogas plants. Gigascience 10, giaa164 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, Q., Gu, M., Hermanowicz, S. W., Hu, H. & Wu, G. Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems. Environ. Int. 138, 105650 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Yin, Q., Yang, S., Wang, Z., Xing, L. & Wu, G. Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide. Chem. Eng. J. 333, 216–225 (2018).

    CAS 

    Google Scholar 

  • Cheng, H. et al. Understanding the antifouling mechanisms related to copper oxide and zinc oxide nanoparticles in anaerobic membrane bioreactors. Environ. Sci. Nano 6, 3467–3479 (2019).

    CAS 

    Google Scholar 

  • Laviad-Shitrit, S. et al. Identification of chironomid species as natural reservoirs of toxigenic Vibrio cholerae strains with pandemic potential. PLoS Negl. Trop. Dis. 14, e0008959 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, J. et al. Metagenomic analysis reveals the microbiome and resistome in migratory birds. Microbiome 8, 26 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rhoades, N. S. et al. Longitudinal profiling of the macaque vaginal microbiome reveals similarities to diverse human vaginal communities. mSystems 6, e01322–20 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pratte, Z. A. et al. Microbiome structure in large pelagic sharks with distinct feeding ecologies. Anim. Microbiome 4, 17 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, F. W. J. et al. The microbiome of deep-sea fish reveals new microbial species and a sparsity of antibiotic resistance genes. Gut Microbes 13, 1–13 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Riiser, E. S. et al. Metagenomic shotgun analyses reveal complex patterns of intra- and interspecific variation in the intestinal microbiomes of codfishes. Appl. Environ. Microbiol. 86, e02788–19 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Le Doujet, T. et al. Closely-related Photobacterium strains comprise the majority of bacteria in the gut of migrating Atlantic cod (Gadus morhua). Microbiome 7, 64 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, M. & Eisen, J. A. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9, R151 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    PubMed 

    Google Scholar 

  • Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594 (2012).

    PubMed 

    Google Scholar 

  • Belmann, P. et al. Bioboxes: standardised containers for interchangeable bioinformatics software. Gigascience 4, 47 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer, F. et al. Assessing taxonomic metagenome profilers with OPAL. Genome Biol. 20, 51 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2016).

  • Youngblut, N. D. & Ley, R. E. Struo2: efficient metagenome profiling database construction for ever-expanding microbial genome datasets. PeerJ 9, e12198 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 38, 5315–5316 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaw, J. & Yu, Y. W. Fast and robust metagenomic sequence comparison through sparse chaining with skani. Nat. Methods 20, 1661–1665 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aroney, S. T. N. et al. CoverM: read coverage calculator for metagenomics. Zenodo https://doi.org/10.5281/zenodo.10531253 (2024).

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Z. et al. Challenges in benchmarking metagenomic profilers. Nat. Methods 18, 618–626 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, W. & Ren, H. TaxonKit: a practical and efficient NCBI taxonomy toolkit. J. Genet. Genomics 48, 844–850 (2021).

    PubMed 

    Google Scholar 

  • Woodcroft, B. J., Cunningham, M., Gans, J. D., Bolduc, B. B. & Hodgkins, S. B. Kingfisher: a utility for procurement of public sequencing data. Zenodo https://doi.org/10.5281/zenodo.10525085 (2024).

  • Woodcroft, B. J. SingleM pipe search database. Zenodo https://doi.org/10.5281/zenodo.5739612 (2021).

  • Woodcroft, B. J. Default SingleM reference ‘metapackage’ data. Zenodo https://doi.org/10.5281/zenodo.5739611 (2023).

  • Woodcroft, B. Public metagenome datasets annotated using SingleM. Zenodo https://doi.org/10.5281/zenodo.10547494 (2024).

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds Krishnapuram, B. & Shah, M.) 785–794 (Association for Computing Machinery, 2016).

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  • Ma, B., Lu, C. & Xu, J. New soil metagenome-assembled genomes catalogue boosts genetic resources. Zenodo https://doi.org/10.5281/zenodo.7341719 (2023).

  • Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Aroney, S. T. N., Camargo, A. P., Tyson, G. W. & Woodcroft, B. J. Galah: more scalable dereplication for metagenome assembled genomes. Zenodo https://doi.org/10.5281/zenodo.10526085 (2024).

  • Woodcroft, B. Supplemented SingleM package inclusive of MAGs beyond GTDB. Zenodo https://doi.org/10.5281/zenodo.10360136 (2024).

  • Woodcroft, B. Public metagenome datasets annotated using SingleM, using a supplemented reference package. Zenodo https://doi.org/10.5281/zenodo.10547501 (2024).

  • Woodcroft, B. J. & Aroney, S. Default SingleM reference ‘metapackage’ data. Zenodo https://doi.org/10.5281/zenodo.5739611 (2024).

  • Woodcroft, B. Targeted MAG recovery of novel Muirbacteria, Wallbacteria, Riflebacteria and Fusobacteria using SIngleM. Zenodo https://doi.org/10.5281/zenodo.10162715 (2023).

  • Woodcroft, B. J. SingleM: novelty-inclusive microbial community profiling of shotgun metagenomes. Source code. GitHub https://github.com/wwood/singlem (2025).

  • Woodcroft, B. J. Sandpiper: website/continuous DB builds for SingleM. Source code. GitHub https://github.com/wwood/sandpiper (2025).

  • Woodcroft, B. J. Smafa: biological sequence aligner for pre-aligned sequences. GitHub https://github.com/wwood/smafa (2025).

  • Woodcroft, B. SingleM BioConda package. BioConda https://anaconda.org/bioconda/singlem (2025).

  • Woodcroft, B. J. SingleM PyPI archive. Python Packaging Index https://pypi.org/project/singlem/ (2025).

  • Woodcroft, B. J. Smafa crate. The Rust Community’s Crate Registry https://crates.io/crates/smafa (2025).

  • Woodcroft, B. J. SingleM docker container. DockerHub https://hub.docker.com/r/wwood/singlem (2025).

  • Woodcroft, B. J. singlem-installation: containerised testing of SingleM installation methods. Source code. GitHub https://github.com/wwood/singlem-installation (2025).

  • Woodcroft, B. J. singlem-benchmarking. Source code. GitHub https://github.com/wwood/singlem-benchmarking (2025).

  • Woodcroft, B. Reference genome data used for benchmarking SingleM. Zenodo https://doi.org/10.5281/zenodo.12525852 (2024).

  • Woodcroft, B. J. singlem_host_or_ecological_predictor: predict whether a metagenome is from a host-associated sample or not based on its SingleM profile. Source code. GitHub https://github.com/wwood/singlem_host_or_ecological_predictor (2025).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button