CRISPR-TO directs RNA to defined intracellular locations
Although spatial RNA organization is central to cellular functions and disease mechanisms, its functional consequences remain poorly understood owing to a lack of tools for manipulating RNA localization within cells. Writing in Nature, Han et al. introduce CRISPR-mediated transcriptome organization (CRISPR-TO), a method that uses the RNA-guiding properties of nuclease-dead dCas13 to transport endogenous RNA to desired subcellular compartments. CRISPR-TO works via chemical-inducible dimerization and consists of three components: a dCas13 fused with one dimerization domain, a subcellular localization signal or motor protein fused with the other dimerization domain, and guide RNAs targeting the RNA of interest. The plant hormone ABA was selected as the inducer.
The authors tested CRISPR-TO by localizing various endogenous mRNAs to the outer mitochondrial membrane (OMM). They observed substantial OMM localization of the target mRNAs despite their varying expression levels. The use of three dCas13-binding sites on a target mRNA yielded 50.6% localization to the OMM.