Programmable initiation of mRNA translation by trans-RNA

https://www.profitableratecpm.com/f4ffsdxe?key=39b1ebce72f3758345b2155c98e6709c
  • Shirokikh, NE & Preiss, T. Translation initiation by coat-dependent ribosome recruitment: recent insights and open questions. Interdisciplinary Wiley. Rev. RNA 9e1473 (2018).

    Article PubMed Google Scholar

  • Brito Querido, J., Diaz-Lopez, I. & Ramakrishnan, V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat. Reverend Mol. Cellular biol. 25168-186 (2023).

    Article PubMed Google Scholar

  • Sonenberg, N. & Dever, TE Factors and regulators of eukaryotic translation initiation. Curr. Notice. Structure. Biol. 1356-63 (2003).

    Article PubMed Google Scholar

  • Brito Querido, J. et al. Structure of a human 48S translational initiation complex. Science 3691220-1227 (2020).

    Article PubMed Google Scholar

  • Pelletier, J. & Sonenberg, N. The organizing principles of eukaryotic ribosome recruitment. Ann. Reverend Biochem. 88307-335 (2019).

    Article PubMed Google Scholar

  • Hinnebusch, AG The scanning mechanism of eukaryotic translation initiation. Ann. Reverend Biochem. 83779-812 (2014).

    Article PubMed Google Scholar

  • Ingolia, NT, Lareau, LF & Weissman, JS Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147789-802 (2011).

    Article PubMed PubMed Central Google Scholar

  • Lee, S., Liu, B., Huang, S.X., Shen, B. and Qian, S.B. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 109E2424-E2432 (2012).

    Article PubMed PubMed Central Google Scholar

  • Orr, MW, Mao, Y., Storz, G. & Qian, SB Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res. 481029-1042 (2020).

    Article PubMed Google Scholar

  • Hinnebusch, AG, Ivanov, IP & Sonenberg, N. Translational control by 5′ untranslated regions of eukaryotic mRNAs. Science 3521413-1416 (2016).

    Article PubMed PubMed Central Google Scholar

  • Chen, J. et al. Ubiquitous functional translation of non-canonical human open reading frames. Science 3671140-1146 (2020).

    Article PubMed PubMed Central Google Scholar

  • Otoupal, PB, Cress, BF, Doudna, JA & Schoeniger, JS CRISPR-RNAa: targeted activation of translation using dCas13 fusions with translation initiation factors. Nucleic Acids Res. 508986-8998 (2022).

    Article PubMed PubMed Central Google Scholar

  • Cao, Y. et al. RNA-based translation activators for targeted gene upregulation. Nat. Common. 146827 (2023).

    Article PubMed PubMed Central Google Scholar

  • Crooke, ST, Baker, BF, Crooke, RM & Liang, XH Antisense technology: an overview and prospectus. Nat. Rev. 20427-453 (2021).

    Article PubMed Google Scholar

  • Chen, H. et al. Chemical and topological design of multicapped mRNAs and capped circular RNAs to augment translation. Nat. Biotechnology. 431128-1143 (2024).

    Article PubMed PubMed Central Google Scholar

  • Dersh, D., Yewdell, J.W. and Wei, J. A SIINFEKL-based system for measuring the efficiency and kinetics of MHC class I antigen presentation. Methods Mol. Biol. 1988109-122 (2019).

    Article PubMed PubMed Central Google Scholar

  • Gu, Y., Mao, Y., Jia, L., Dong, L. and Qian, S.B. Bidirectional ribosome analysis controls the stringency of start codon selection. Nat. Common. 126604 (2021).

    Article PubMed PubMed Central Google Scholar

  • Lee, AS, Kranzusch, PJ, Doudna, JA & Cate, JH eIF3d is an mRNA cap-binding protein required for initiation of specialized translation. Nature 53696-99 (2016).

    Article PubMed PubMed Central Google Scholar

  • Simonetti, A., Guca, E., Bochler, A., Kuhn, L. and Hashem, Y. Structural insight into late-stage mammalian initiation complexes. Cellular representative. 31107497 (2020).

    Article PubMed PubMed Central Google Scholar

  • Chen, R. et al. Circular RNA engineering for enhanced protein production. Nat. Biotechnology. 41262-272 (2023).

    Article PubMed Google Scholar

  • Calvo, SE, Pagliarini, DJ & Mootha, VK Upstream open reading frames cause widespread reduction in protein expression and are polymorphic in humans. Proc. Natl Acad. Sci. USA 1067507-7512 (2009).

    Article PubMed PubMed Central Google Scholar

  • Vattem, KM & Wek, RC Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 10111269-11274 (2004).

    Article PubMed PubMed Central Google Scholar

  • Ameri, K. & Harris, AL Activation of transcription factor 4. Int. J. Biochemistry. Cellular biol. 4014-21 (2008).

    Article PubMed Google Scholar

  • Calkhoven, CF, Muller, C. & Leutz, A. Translational control of C/EBPα and C/EBPβ isoform expression. Development of genes. 141920-1932 (2000).

    Article PubMed PubMed Central Google Scholar

  • Descombes, P. & Schibler, U. A liver-enriched transcription activator protein, LAP, and a transcription inhibitor protein, LIP, are translated from the same mRNA. Cell 67569-579 (1991).

    Article PubMed Google Scholar

  • Müller, C. et al. Reduced expression of C/EBPβ-LIP prolongs the health and lifespan of mice. eLife 7e34985 (2018).

    Article PubMed PubMed Central Google Scholar

  • Faghihi, MA & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Reverend Mol. Cellular biol. 10637-643 (2009).

    Article PubMed PubMed Central Google Scholar

  • Pelechano, V. & Steinmetz, LM Gene regulation by antisense transcription. Nat. Reverend Genet. 14880-893 (2013).

    Article PubMed Google Scholar

  • Coban, I. et al. Formation of dsRNA leads to preferential nuclear export and gene expression. Nature 631432-438 (2024).

    Article PubMed PubMed Central Google Scholar

  • Reis, RS & Poirier, Y. Making sense of the puzzle of natural antisense transcription. Trends Plant Sci. 261104-1115 (2021).

    Article PubMed Google Scholar

  • Gu, W. et al. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 1511488-1500 (2012).

    Article PubMed PubMed Central Google Scholar

  • Young, SK, Baird, TD & Wek, RC Translational regulation of the glutamyl-prolyl-tRNA synthetase EPRS gene by bypassing upstream open reading frames with non-canonical start codons. J. Biol. Chemical. 29110824-10835 (2016).

    Article PubMed PubMed Central Google Scholar

  • Wan, J. & Qian, SB TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res. 42D845-D850 (2014).

    Article PubMed Google Scholar

  • Werner, A., Kanhere, A., Wahlestedt, C. & Mattick, J. S. Natural antisense transcripts as versatile regulators of gene expression. Nat. Reverend Genet. 25730-744 (2024).

    PubMed Google Scholar

  • Wilson, RC & Doudna, JA Molecular mechanisms of RNA interference. Ann. Reverend Biophys. 42217-239 (2013).

    Article PubMed PubMed Central Google Scholar

  • Carrieri, C. et al. A long noncoding antisense RNA controls Uchl1 translation via an integrated SINEB2 repeat. Nature 491454-457 (2012).

    Article PubMed Google Scholar

  • Yang, Y. & Wang, Z. IRES-mediated cap-independent translation, a pathway to the hidden proteome. J. Mol. Cell. Biol. 11911-919 (2019).

    Article PubMed PubMed Central Google Scholar

  • Bogaert, A., Fernandez, E. & Gevaert, K. N-terminal proteoforms in human diseases. Biochemistry Trends. Sci. 45308-320 (2020).

    Article PubMed Google Scholar

  • Mao, Y., Jia, L., Dong, L., Shu, XE and Qian, SB Start codon-associated ribosomal frameshifting mediates adaptation to nutritional stress. Nat. Structure. Mol. Biol. 301816-1825 (2023).

    Article PubMed Google Scholar

  • Omnibus on Gene Expression. Programmable initiation of mRNA translation by trans-RNA. www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE277746 (2025).

  • Jia, L. et al. United States0ri/Jia2025. GitHub github.com/usa0ri/Jia2025/tree/master (2025).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button