Programmable initiation of mRNA translation by trans-RNA

Shirokikh, NE & Preiss, T. Translation initiation by coat-dependent ribosome recruitment: recent insights and open questions. Interdisciplinary Wiley. Rev. RNA 9e1473 (2018).
Brito Querido, J., Diaz-Lopez, I. & Ramakrishnan, V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat. Reverend Mol. Cellular biol. 25168-186 (2023).
Sonenberg, N. & Dever, TE Factors and regulators of eukaryotic translation initiation. Curr. Notice. Structure. Biol. 1356-63 (2003).
Brito Querido, J. et al. Structure of a human 48S translational initiation complex. Science 3691220-1227 (2020).
Pelletier, J. & Sonenberg, N. The organizing principles of eukaryotic ribosome recruitment. Ann. Reverend Biochem. 88307-335 (2019).
Hinnebusch, AG The scanning mechanism of eukaryotic translation initiation. Ann. Reverend Biochem. 83779-812 (2014).
Ingolia, NT, Lareau, LF & Weissman, JS Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147789-802 (2011).
Lee, S., Liu, B., Huang, S.X., Shen, B. and Qian, S.B. Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proc. Natl Acad. Sci. USA 109E2424-E2432 (2012).
Orr, MW, Mao, Y., Storz, G. & Qian, SB Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res. 481029-1042 (2020).
Hinnebusch, AG, Ivanov, IP & Sonenberg, N. Translational control by 5′ untranslated regions of eukaryotic mRNAs. Science 3521413-1416 (2016).
Chen, J. et al. Ubiquitous functional translation of non-canonical human open reading frames. Science 3671140-1146 (2020).
Otoupal, PB, Cress, BF, Doudna, JA & Schoeniger, JS CRISPR-RNAa: targeted activation of translation using dCas13 fusions with translation initiation factors. Nucleic Acids Res. 508986-8998 (2022).
Cao, Y. et al. RNA-based translation activators for targeted gene upregulation. Nat. Common. 146827 (2023).
Crooke, ST, Baker, BF, Crooke, RM & Liang, XH Antisense technology: an overview and prospectus. Nat. Rev. 20427-453 (2021).
Chen, H. et al. Chemical and topological design of multicapped mRNAs and capped circular RNAs to augment translation. Nat. Biotechnology. 431128-1143 (2024).
Dersh, D., Yewdell, J.W. and Wei, J. A SIINFEKL-based system for measuring the efficiency and kinetics of MHC class I antigen presentation. Methods Mol. Biol. 1988109-122 (2019).
Gu, Y., Mao, Y., Jia, L., Dong, L. and Qian, S.B. Bidirectional ribosome analysis controls the stringency of start codon selection. Nat. Common. 126604 (2021).
Lee, AS, Kranzusch, PJ, Doudna, JA & Cate, JH eIF3d is an mRNA cap-binding protein required for initiation of specialized translation. Nature 53696-99 (2016).
Simonetti, A., Guca, E., Bochler, A., Kuhn, L. and Hashem, Y. Structural insight into late-stage mammalian initiation complexes. Cellular representative. 31107497 (2020).
Chen, R. et al. Circular RNA engineering for enhanced protein production. Nat. Biotechnology. 41262-272 (2023).
Calvo, SE, Pagliarini, DJ & Mootha, VK Upstream open reading frames cause widespread reduction in protein expression and are polymorphic in humans. Proc. Natl Acad. Sci. USA 1067507-7512 (2009).
Vattem, KM & Wek, RC Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 10111269-11274 (2004).
Ameri, K. & Harris, AL Activation of transcription factor 4. Int. J. Biochemistry. Cellular biol. 4014-21 (2008).
Calkhoven, CF, Muller, C. & Leutz, A. Translational control of C/EBPα and C/EBPβ isoform expression. Development of genes. 141920-1932 (2000).
Descombes, P. & Schibler, U. A liver-enriched transcription activator protein, LAP, and a transcription inhibitor protein, LIP, are translated from the same mRNA. Cell 67569-579 (1991).
Müller, C. et al. Reduced expression of C/EBPβ-LIP prolongs the health and lifespan of mice. eLife 7e34985 (2018).
Faghihi, MA & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Reverend Mol. Cellular biol. 10637-643 (2009).
Pelechano, V. & Steinmetz, LM Gene regulation by antisense transcription. Nat. Reverend Genet. 14880-893 (2013).
Coban, I. et al. Formation of dsRNA leads to preferential nuclear export and gene expression. Nature 631432-438 (2024).
Reis, RS & Poirier, Y. Making sense of the puzzle of natural antisense transcription. Trends Plant Sci. 261104-1115 (2021).
Gu, W. et al. CapSeq and CIP-TAP identify Pol II start sites and reveal capped small RNAs as C. elegans piRNA precursors. Cell 1511488-1500 (2012).
Young, SK, Baird, TD & Wek, RC Translational regulation of the glutamyl-prolyl-tRNA synthetase EPRS gene by bypassing upstream open reading frames with non-canonical start codons. J. Biol. Chemical. 29110824-10835 (2016).
Wan, J. & Qian, SB TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Res. 42D845-D850 (2014).
Werner, A., Kanhere, A., Wahlestedt, C. & Mattick, J. S. Natural antisense transcripts as versatile regulators of gene expression. Nat. Reverend Genet. 25730-744 (2024).
Wilson, RC & Doudna, JA Molecular mechanisms of RNA interference. Ann. Reverend Biophys. 42217-239 (2013).
Carrieri, C. et al. A long noncoding antisense RNA controls Uchl1 translation via an integrated SINEB2 repeat. Nature 491454-457 (2012).
Yang, Y. & Wang, Z. IRES-mediated cap-independent translation, a pathway to the hidden proteome. J. Mol. Cell. Biol. 11911-919 (2019).
Bogaert, A., Fernandez, E. & Gevaert, K. N-terminal proteoforms in human diseases. Biochemistry Trends. Sci. 45308-320 (2020).
Mao, Y., Jia, L., Dong, L., Shu, XE and Qian, SB Start codon-associated ribosomal frameshifting mediates adaptation to nutritional stress. Nat. Structure. Mol. Biol. 301816-1825 (2023).
Omnibus on Gene Expression. Programmable initiation of mRNA translation by trans-RNA. www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE277746 (2025).
Jia, L. et al. United States0ri/Jia2025. GitHub github.com/usa0ri/Jia2025/tree/master (2025).



