Improving engineered biological systems with electronics and microfluidics

Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology. Nat. Rev. Microbiol. 12, 381–390 (2014).
Google Scholar
Brophy, J. A. N. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).
Google Scholar
Way, J. C., Collins, J. J., Keasling, J. D. & Silver, P. A. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157, 151–161 (2014).
Google Scholar
Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).
Google Scholar
Nielsen, A. A. K. et al. Genetic circuit design automation. Science 352, aac7341 (2016).
Google Scholar
Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. & Densmore, D. Genetic circuit design automation with Cello 2.0. Nat. Protoc. 17, 1097–1113 (2022).
Google Scholar
Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. 12, 878 (2016).
Google Scholar
Shetty, R. P., Endy, D. & Knight, T. F. Jr. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).
Google Scholar
Purnick, P. E. M. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).
Google Scholar
Kwok, R. Five hard truths for synthetic biology. Nature 463, 288–290 (2010).
Google Scholar
Lee, S. Y. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat. Catal. 2, 18–33 (2019).
Google Scholar
Keasling, J. D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).
Google Scholar
Khalil, A. S. & Collins, J. J. Synthetic biology: applications come of age. Nat. Rev. Genet. 11, 367–379 (2010).
Google Scholar
Pei, L., Garfinkel, M. & Schmidt, M. Bottlenecks and opportunities for synthetic biology biosafety standards. Nat. Commun. 13, 2175 (2022).
Google Scholar
Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).
Google Scholar
Lan, F., Demaree, B., Ahmed, N. & Abate, A. R. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat. Biotechnol. 35, 640–646 (2017).
Google Scholar
Abate, A. R., Hung, T., Mary, P., Agresti, J. J. & Weitz, D. A. High-throughput injection with microfluidics using picoinjectors. Proc. Natl Acad. Sci. USA 107, 19163–19166 (2010).
Google Scholar
Selberg, J., Gomez, M. & Rolandi, M. The potential for convergence between synthetic biology and bioelectronics. Cell Syst. 7, 231–244 (2018).
Google Scholar
Rivnay, J. et al. Integrating bioelectronics with cell-based synthetic biology. Nat. Rev. Bioeng. 3, 317–332 (2025).
Aghlmand, F. et al. A 65-nm CMOS fluorescence sensor for dynamic monitoring of living cells. IEEE J. Solid-State Circuits 58, 3003–3019 (2023).
Google Scholar
Lee, H., Liu, Y., Westervelt, R. M. & Ham, D. IC/microfluidic hybrid system for magnetic manipulation of biological cells. IEEE J. Solid-State Circuits 41, 1471–1480 (2006).
Google Scholar
Ghafar-Zadeh, E., Sawan, M., Chodavarapu, V. P. & Hosseini-Nia, T. Bacteria growth monitoring through a differential CMOS capacitive sensor. IEEE Trans. Biomed. Circuits Syst. 4, 232–238 (2010).
Google Scholar
Manickam, A. et al. A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
Google Scholar
Zhu, C., Maldonado, J. & Sengupta, K. CMOS-based electrokinetic microfluidics with multi-modal cellular and bio-molecular sensing for end-to-end point-of-care system. IEEE Trans. Biomed. Circuits Syst. 15, 1250–1267 (2021).
Google Scholar
Inda-Webb, M. E. et al. Sub-1.4 cm3 capsule for detecting labile inflammatory biomarkers in situ. Nature 620, 386–392 (2023).
Google Scholar
Tschirhart, T. et al. Electronic control of gene expression and cell behaviour in Escherichia coli through redox signalling. Nat. Commun. 8, 14030 (2017).
Eddie, B. J., Malanoski, A. P., Onderko, E. L., Phillips, D. A. & Glaven, S. M. Marinobacter atlanticus electrode biofilms differentially regulate gene expression depending on electrode potential and lifestyle. Biofilm 3, 100051 (2021).
Google Scholar
Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).
Google Scholar
Rothschild, L. J. et al. Building synthetic cells—from the technology infrastructure to cellular entities. ACS Synth. Biol. 13, 974–997 (2024).
Google Scholar
Jung, J. K. et al. Cell-free biosensors for rapid detection of water contaminants. Nat. Biotechnol. 38, 1451–1459 (2020).
Google Scholar
Takahashi, M. K. et al. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 9, 3347 (2018).
Google Scholar
Chen, Y. et al. Genetic circuit design automation for yeast. Nat. Microbiol. 5, 1349–1360 (2020).
Google Scholar
Fedorec, A. J. H. et al. Emergent digital bio-computation through spatial diffusion and engineered bacteria. Nat. Commun. 15, 4896 (2024).
Google Scholar
Sun, G. L., Reynolds, E. E. & Belcher, A. M. Designing yeast as plant-like hyperaccumulators for heavy metals. Nat. Commun. 10, 5080 (2019).
Google Scholar
van der Meer, J. R. & Belkin, S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat. Rev. Microbiol. 8, 511–522 (2010).
Google Scholar
Go´mez, R. et al. Microfluidic biochip for impedance spectroscopy of biological species. Biomed. Microdevices 3, 201–209 (2001).
Petchakup, C., Li, K. & Hou, H. Advances in single cell impedance cytometry for biomedical applications. Micromachines 8, 87 (2017).
Google Scholar
Kang, J., Kim, T., Tak, Y., Lee, J.-H. & Yoon, J. Cyclic voltammetry for monitoring bacterial attachment and biofilm formation. J. Ind. Eng. Chem. 18, 800–807 (2012).
Google Scholar
Zadeh, E. G., Sawan, M., Jalali, M. & Therriault, D. CMOS-based capacitive sensor array dedicated to microfluidic studies. In 2006 International Workshop on Computer Architecture for Machine Perception and Sensing 42–43 (IEEE, 2006).
Valijam, S. et al. Fabricating a dielectrophoretic microfluidic device using 3D-printed moulds and silver conductive paint. Sci. Rep. 13, 9560 (2023).
Google Scholar
Akabuogu, E. U., Zhang, L., Krašovec, R., Roberts, I. S. & Waigh, T. A. Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior. Nano Lett. 24, 2234–2241 (2024).
Google Scholar
Arduini, F. et al. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 126, 346–354 (2019).
Google Scholar
Yi, C., Li, C.-W., Ji, S. & Yang, M. Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560, 1–23 (2006).
Google Scholar
Gach, P. C. et al. A droplet microfluidic platform for automating genetic engineering. ACS Synth. Biol. 5, 426–433 (2016).
Google Scholar
Iwai, K. et al. Scalable and automated CRISPR-based strain engineering using droplet microfluidics. Microsyst. Nanoeng. 8, 31 (2022).
Google Scholar
Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H. & Quake, S. R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17, 1109–1111 (1999).
Google Scholar
Hatch, A. C. et al. 1-Million droplet array with wide-field fluorescence imaging for digital PCR. Lab Chip 11, 3838–3845 (2011).
Bhargava, K. C., Thompson, B. & Malmstadt, N. Discrete elements for 3D microfluidics. Proc. Natl Acad. Sci. USA 111, 15013–15018 (2014).
Google Scholar
Zeng, Y., Novak, R., Shuga, J., Smith, M. T. & Mathies, R. A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal. Chem. 82, 3183–3190 (2010).
Google Scholar
Bennett, M. R. & Hasty, J. Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10, 628–638 (2009).
Google Scholar
Toriello, N. M. et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc. Natl Acad. Sci. USA 105, 20173–20178 (2008).
Google Scholar
Leung, K. et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc. Natl Acad. Sci. USA 109, 7665–7670 (2012).
Google Scholar
Churski, K. et al. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12, 1629–1637 (2012).
Oblath, E. A., Henley, W. H., Alarie, J. P. & Ramsey, J. M. A microfluidic chip integrating DNA extraction and real-time PCR for the detection of bacteria in saliva. Lab Chip 13, 1325–1332 (2013).
Lashkaripour, A. et al. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 12, 25 (2021).
Google Scholar
Linshiz, G. et al. End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis. J. Biol. Eng. 10, 3 (2016).
Google Scholar
Fracassi, C., Postiglione, L., Fiore, G. & di Bernardo, D. Automatic control of gene expression in mammalian cells. ACS Synth. Biol. 5, 296–302 (2015).
Google Scholar
Wu, L. L., Babikian, S., Li, G.-P. & Bachman, M. Microfluidic printed circuit boards. In 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) 1576–1581 (IEEE, 2011).
Husser, M. C., Vo, P. Q. N., Sinha, H., Ahmadi, F. & Shih, S. C. C. An automated induction microfluidics system for synthetic biology. ACS Synth. Biol. 7, 933–944 (2018).
Google Scholar
Howell, J., Hammarton, T. C., Altmann, Y. & Jimenez, M. High-speed particle detection and tracking in microfluidic devices using event-based sensing. Lab Chip 20, 3024–3035 (2020).
Google Scholar
de Cesare, I. et al. ChipSeg: an automatic tool to segment bacterial and mammalian cells cultured in microfluidic devices. ACS Omega 6, 2473–2476 (2021).
Google Scholar
Bachler, S., Haidas, D., Ort, M., Duncombe, T. A. & Dittrich, P. S. Microfluidic platform enables tailored translocation and reaction cascades in nanoliter droplet networks. Commun. Biol. 3, 769 (2020).
Google Scholar
van Sluijs, B., Maas, R. J. M., van der Linden, A. J., de Greef, T. F. A. & Huck, W. T. S. A microfluidic optimal experimental design platform for forward design of cell-free genetic networks. Nat. Commun. 13, 3626 (2022).
Google Scholar
Zhao, S. et al. A new design for living cell-based biosensors: microgels with a selectively permeable shell that can harbor bacterial species. Sens. Actuators B Chem. 334, 129648 (2021).
Google Scholar
Khazim, M., Pedone, E., Postiglione, L., di Bernardo, D. & Marucci, L. A microfluidic/microscopy-based platform for on-chip controlled gene expression in mammalian cells. Methods Mol. Biol. 2229, 205–219 (2021).
Ren, Y. et al. A three-in-one microfluidic droplet digital PCR platform for absolute quantitative analysis of DNA. Lab Chip 23, 2521–2530 (2023).
Google Scholar
Sun, Y. et al. Two-layered microfluidic devices for high-throughput dynamic analysis of synthetic gene circuits in E. coli. ACS Synth. Biol. 11, 3954–3965 (2022).
Google Scholar
Rahman, K. M. T. & Butzin, N. C. Counter-on-chip for bacterial cell quantification, growth, and live–dead estimations. Sci. Rep. 14, 782 (2024).
Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940–954 (2014).
Google Scholar
Dou, M., Dominguez, D. C., Li, X., Sanchez, J. & Scott, G. A versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis. Anal. Chem. 86, 7978–7986 (2014).
Google Scholar
Delamarche, E., Juncker, D. & Schmid, H. Microfluidics for processing surfaces and miniaturizing biological assays. Adv. Mater. 17, 2911–2933 (2005).
Google Scholar
Gulati, S. et al. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6, S493–S506 (2009).
Google Scholar
Xian, Z. et al. A novel microfluidics PMMA/paper hybrid bioimmunosensor for laser-induced fluorescence detection in the determination of α-fetoprotein from serum. Microchem. J. 195, 109476 (2023).
Google Scholar
Srinivasan, V., Pamula, V., Pollack, M. & Fair, R. A digital microfluidic biosensor for multianalyte detection. In the Sixteenth Annual International Conference on Micro Electro Mechanical Systems 327–330 (IEEE, 2003).
Hamedi, M. M. et al. Integrating electronics and microfluidics on paper. Adv. Mater. 28, 5054–5063 (2016).
Google Scholar
Lee, H., Sun, E., Ham, D. & Weissleder, R. Chip–NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874 (2008).
Google Scholar
Zhou, A. Y., Baruch, M., Ajo-Franklin, C. M. & Maharbiz, M. M. A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS ONE 12, e0184994 (2017).
Google Scholar
Madhvapathy, S. R. et al. Miniaturized implantable temperature sensors for the long-term monitoring of chronic intestinal inflammation. Nat. Biomed. Eng. 8, 1040–1052 (2024).
Stephenson, A. et al. PurpleDrop: a digital microfluidics-based platform for hybrid molecular–electronics applications. IEEE Micro 40, 76–86 (2020).
Google Scholar
Cai, R. et al. Creation of a point-of-care therapeutics sensor using protein engineering, electrochemical sensing and electronic integration. Nat. Commun. 15, 1689 (2024).
Google Scholar
Coelho, B. et al. Hybrid digital-droplet microfluidic chip for applications in droplet digital nucleic acid amplification: design, fabrication and characterization. Sensors 23, 4927 (2023).
Google Scholar
Bouzid, K., Greener, J., Carrara, S. & Gosselin, B. Portable impedance-sensing device for microorganism characterization in the field. Sci. Rep. 13, 10526 (2023).
Google Scholar
Jafari, H., Soleymani, L. & Genov, R. 16-Channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs. IEEE Trans. Biomed. Circuits Syst. 6, 468–478 (2012).
Google Scholar
Manaresi, N. et al. A CMOS chip for individual cell manipulation and detection. IEEE J. Solid-State Circuits 38, 2297–2305 (2003).
Google Scholar
Luan, L., Evans, R. D., Jokerst, N. M. & Fair, R. B. Integrated optical sensor in a digital microfluidic platform. IEEE Sens. J. 8, 628–635 (2008).
Google Scholar
Hunt, T. P., Issadore, D. & Westervelt, R. M. Integrated circuit/microfluidic chip to programmably trap and move cells and droplets with dielectrophoresis. Lab Chip 8, 81–87 (2008).
Google Scholar
Lai, K. Y.-T., Yang, Y.-T. & Lee, C.-Y. An intelligent digital microfluidic processor for biomedical detection. J. Signal Process. Syst. 78, 85–93 (2014).
Google Scholar
Park, J. et al. Microscale biosensor array based on flexible polymeric platform toward lab-on-a-needle: real-time multiparameter biomedical assays on curved needle surfaces. ACS Sens. 5, 1363–1373 (2020).
Google Scholar
Khorasani, M., Behnam, M., van den Berg, L., Backhouse, C. J. & Elliott, D. G. High-voltage CMOS controller for microfluidics. IEEE Trans. Biomed. Circuits Syst. 3, 89–96 (2009).
Google Scholar
Issadore, D., Franke, T., Brown, K. A. & Westervelt, R. M. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips. Lab Chip 10, 2937–2943 (2010).
Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D. & Hassibi, A. A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Trans. Biomed. Circuits Syst. 4, 379–390 (2010).
Google Scholar
Bounik, R. et al. A CMOS microelectrode array integrated into an open, continuously perfused microfluidic system. In 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS) 491–494 (IEEE, 2022).
Ding, Z., Xu, C., Wang, Y. & Pellegrini, G. Ultra-low-light CMOS biosensor complements microfluidics to achieve portable diagnostics. Procedia Technol. 27, 39–41 (2017).
Google Scholar
Frey, U. et al. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45, 467–482 (2010).
Google Scholar
Liu, Q. et al. 17.7 Droplet microfluidics co-designed with real-time CMOS luminescence sensing and impedance spectroscopy of 4nl droplets at a 67mm/s velocity. In 2024 IEEE International Solid-State Circuits Conference (ISSCC) 326–328 (IEEE, 2024).
Jin, X., Liu, Z., Li, T., Guo, Q. & Yang, J. Online monitoring and portable analytical system with CMOS sensor and microfluidic technology for cell cultivation applications. In 2010 Symposium on Photonics and Optoelectronics 1–4 (IEEE, 2010).
Issadore, D., Franke, T., Brown, K. A., Hunt, T. P. & Westervelt, R. M. High-voltage dielectrophoretic and magnetophoretic hybrid integrated circuit/microfluidic chip. J. Microelectromech. Syst. 18, 1220–1225 (2009).
Li, R. et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 11, 3207 (2020).
Google Scholar
Uguz, I. et al. Flexible switch matrix addressable electrode arrays with organic electrochemical transistor and pn diode technology. Nat. Commun. 15, 533 (2024).
Google Scholar
Sawan, M., Miled, M. A. & Ghafar-Zadeh, E. CMOS/microfluidic lab-on-chip for cells-based diagnostic tools. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 5334–5337 (IEEE, 2010).
Cornelis, S. et al. Silicon µPCR chip for forensic STR profiling with hybeacon probe melting curves. Sci. Rep. 9, 7341 (2019).
Mimee, M. et al. An ingestible bacterial–electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).
Google Scholar
Lee, H., Liu, Y., Ham, D. & Westervelt, R. M. Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 7, 331–337 (2007).
Google Scholar
Zhou, Q. et al. Miniature magnetic resonance imaging system for in situ monitoring of bacterial growth and biofilm formation. In IEEE Transactions on Biomedical Circuits and Systems 990–1000 (IEEE, 2024).
Hall, D. A. et al. A scalable CMOS molecular electronics chip for single-molecule biosensing. IEEE Trans. Biomed. Circuits Syst. 16, 1030–1043 (2022).
Google Scholar
Huang, Y. & Mason, A. J. Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13, 3929–3934 (2013).
Ghafar-Zadeh, E., Sawan, M. & Therriault, D. Novel direct-write CMOS-based laboratory-on-chip: design, assembly and experimental results. Sens. Actuators A Phys. 134, 27–36 (2007).
Google Scholar
Lee, H., Xu, L., Koh, D., Nyayapathi, N. & Oh, K. Various on-chip sensors with microfluidics for biological applications. Sensors 14, 17008–17036 (2014).
Google Scholar
Toumazou, C. et al. Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10, 641–646 (2013).
Google Scholar
Chien, J.-C. et al. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies. Lab Chip 18, 2065–2076 (2018).
Google Scholar
Levine, P. M., Gong, P., Levicky, R. & Shepard, K. L. Active CMOS sensor array for electrochemical biomolecular detection. IEEE J. Solid-State Circuits 43, 1859–1871 (2008).
Google Scholar
Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).
Google Scholar
Hong, L., Li, H., Yang, H. & Sengupta, K. Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS. IEEE J. Solid-State Circuits 52, 2388–2406 (2017).
Google Scholar
Zhu, C., Wen, Y., Liu, T., Yang, H. & Sengupta, K. An ingestible pill with CMOS fluorescence sensor array, bi-directional wireless interface and packaged optics for in-vivo bio-molecular sensing. IEEE Trans. Biomed. Circuits Syst. 17, 257–272 (2023).
Google Scholar
Bustillo, J., Fife, K., Merriman, B. & Rothberg, J. Development of the ion torrent CMOS chip for DNA sequencing. In 2013 IEEE International Electron Devices Meeting 8.1.1–8.1.4 (IEEE, 2013).
Lai, K. Y.-T. et al. A field-programmable lab-on-a-chip with built-in self-test circuit and low-power sensor-fusion solution in 0.35μm standard CMOS process. In 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC) 1–4 (IEEE, 2015).
Murali, P. et al. 24.6 A CMOS micro-flow cytometer for magnetic label detection and classification. In 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 422–423 (IEEE, 2014).
Singh, R. R., Leng, L., Guenther, A. & Genov, R. A CMOS–microfluidic chemiluminescence contact imaging microsystem. IEEE J. Solid-State Circuits 47, 2822–2833 (2012).
Google Scholar
Kumashi, S. et al. A CMOS multi-modal electrochemical and impedance cellular sensing array for massively paralleled exoelectrogen screening. IEEE Trans. Biomed. Circuits Syst. 15, 221–234 (2021).
Google Scholar
Lee, D. et al. A multi-functional CMOS biosensor array with on-chip DEP-assisted sensing for rapid low-concentration analyte detection and close-loop particle manipulation with no external electrodes. IEEE Trans. Biomed. Circuits Syst. 17, 1214–1226 (2023).
Google Scholar
Kuo, Y.-H., Chen, Y.-S., Huang, P.-C. & Lee, G.-B. A CMOS-based capacitive biosensor for detection of a breast cancer microRNA biomarker. IEEE Open J. Nanotechnol. 1, 157–162 (2020).
Google Scholar
Murari, K., Etienne-Cummings, R., Thakor, N. V. & Cauwenberghs, G. A CMOS in-pixel CTIA high-sensitivity fluorescence imager. IEEE Trans. Biomed. Circuits Syst. 5, 449–458 (2011).
Google Scholar
Forouhi, S., Dehghani, R. & Ghafar-Zadeh, E. CMOS based capacitive sensors for life science applications: a review. Sens. Actuators A Phys. 297, 111531 (2019).
Google Scholar
Vallero, A. et al. Memristive biosensors integration with microfluidic platform. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 2120–2127 (2016).
Google Scholar
Sun, A. C., Alvarez-Fontecilla, E., Venkatesh, A. G., Aronoff-Spencer, E. & Hall, D. A. High-density redox amplified coulostatic discharge-based biosensor array. IEEE J. Solid-State Circuits 53, 2054–2064 (2018).
Google Scholar
Tang, H. et al. 2D magnetic sensor array for real-time cell tracking and multi-site detection with increased robustness and flow-rate. In 2019 IEEE Custom Integrated Circuits Conference (CICC) 1–4 (IEEE, 2019).
Spyropoulos, G. D., Gelinas, J. N. & Khodagholy, D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2019).
Linder, V. et al. Microfluidics/CMOS orthogonal capabilities for cell biology. Biomed. Microdevices 8, 159–166 (2006).
Atkinson, J. T. et al. Real-time bioelectronic sensing of environmental contaminants. Nature 611, 548–553 (2022).
Google Scholar
Hall, D. A., Gaster, R. S., Makinwa, K. A. A., Wang, S. X. & Murmann, B. A 256 pixel magnetoresistive biosensor microarray in 0.18 µm CMOS. IEEE J. Solid-State Circuits 48, 1290–1301 (2013).
Google Scholar
Fuller, C. W. et al. Molecular electronics sensors on a scalable semiconductor chip: a platform for single-molecule measurement of binding kinetics and enzyme activity. Proc. Natl Acad. Sci. USA 119, e2112812119 (2022).
Google Scholar
Manickam, A. et al. A fully-electronic charge-based DNA sequencing CMOS biochip. In 2012 Symposium on VLSI Circuits (VLSIC) 126–127 (IEEE, 2012).
Manickam, A. et al. A CMOS electrochemical biochip with 32 × 32 three-electrode voltammetry pixels. IEEE J. Solid-State Circuits 54, 2980–2990 (2019).
Google Scholar
Dragas, J. et al. In vitro multi-functional microelectrode array featuring 59760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels. IEEE J. Solid-State Circuits 52, 1576–1590 (2017).
Google Scholar
Rothe, J., Frey, O., Stettler, A., Chen, Y. & Hierlemann, A. Fully integrated CMOS microsystem for electrochemical measurements on 32 × 32 working electrodes at 90 frames per second. Anal. Chem. 86, 6425–6432 (2014).
Google Scholar
Wang, H., Mahdavi, A., Tirrell, D. A. & Hajimiri, A. A magnetic cell-based sensor. Lab Chip 12, 4465–4471 (2012).
Lee, D. et al. 17.6 Fully integrated CMOS ferrofluidic biomolecular processing platform with on-chip droplet-based manipulation, multiplexing and sensing. In 2024 IEEE International Solid-State Circuits Conference (ISSCC) 324–326 (IEEE, 2024).
Hierlemann, A., Frey, U., Hafizovic, S. & Heer, F. Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays. Proc. IEEE 99, 252–284 (2011).
Google Scholar
Welch, D. & Christen, J. B. Seamless integration of CMOS and microfluidics using flip chip bonding. J. Micromech. Microeng. 23, 035009 (2013).
Google Scholar
Dong, R., Liu, Y., Mou, L., Deng, J. & Jiang, X. Microfluidics‐based biomaterials and biodevices. Adv. Mater. 31, e1805033 (2018).
van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).
Google Scholar
Sun, T. & Morgan, H. Single-cell microfluidic impedance cytometry: a review. Microfluid. Nanofluid. 8, 423–443 (2010).
Google Scholar
Ostrov, N. et al. A modular yeast biosensor for low-cost point-of-care pathogen detection. Sci. Adv. 3, e1603221 (2017).
Google Scholar
Carpenter, A. C., Paulsen, I. T. & Williams, T. C. Blueprints for biosensors: design, limitations, and applications. Genes 9, 375 (2018).
Google Scholar
Au, A. K., Bhattacharjee, N., Horowitz, L. F., Chang, T. C. & Folch, A. 3D-printed microfluidic automation. Lab Chip 15, 1934–1941 (2015).
Google Scholar
Paguirigan, A. L. & Beebe, D. J. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays. BioEssays 30, 811–821 (2008).
Google Scholar
Yan, S., Zhang, J., Yuan, D. & Li, W. Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38, 238–249 (2016).
Google Scholar
Battat, S., Weitz, D. A. & Whitesides, G. M. An outlook on microfluidics: the promise and the challenge. Lab Chip 22, 530–536 (2022).
Google Scholar
Atkinson, J. T., Chavez, M. S., Niman, C. M. & El‐Naggar, M. Y. Living electronics: a catalogue of engineered living electronic components. Microb. Biotechnol. 16, 507–533 (2022).
Google Scholar
Diorio, C., Hsu, D. & Figueroa, M. Adaptive CMOS: from biological inspiration to systems-on-a-chip. Proc. IEEE 90, 345–357 (2002).
Google Scholar
Mosadegh, B., Bersano-Begey, T., Park, J. Y., Burns, M. A. & Takayama, S. Next-generation integrated microfluidic circuits. Lab Chip 11, 2813–2818 (2011).
Lashkaripour, A., Silva, R. & Densmore, D. Desktop micromilled microfluidics. Microfluid. Nanofluid. 22, 31 (2018).
Khan, S. M., Gumus, A., Nassar, J. M. & Hussain, M. M. CMOS enabled microfluidic systems for healthcare based applications. Adv. Mater. 30, e1705759 (2018).
Google Scholar
Karim, A. S. et al. Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists. Nat. Commun. 15, 5425 (2024).
Google Scholar
Ma, Y. et al. A review of electrochemical electrodes and readout interface designs for biosensors. IEEE Open J. Solid-State Circuits Soc. 3, 76–88 (2023).
Google Scholar
Dixon, T. A., Williams, T. C. & Pretorius, I. S. Sensing the future of bio-informational engineering. Nat. Commun. 12, 388 (2021).
Google Scholar
Datta-Chaudhuri, T., Smela, E. & Abshire, P. A. System-on-chip considerations for heterogeneous integration of CMOS and fluidic bio-interfaces. IEEE Trans. Biomed. Circuits Syst. 10, 1129–1142 (2016).
Google Scholar
Brooks, S. M. & Alper, H. S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 12, 1390 (2021).
Google Scholar
Steiger, C. et al. Ingestible electronics for diagnostics and therapy. Nat. Rev. Mater. 4, 83–98 (2018).
Google Scholar
Nadeau, P. et al. Prolonged energy harvesting for ingestible devices. Nat. Biomed. Eng. 1, 0022 (2017).
Google Scholar
Muluneh, M. & Issadore, D. A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics. Lab Chip 14, 4552–4558 (2014).
Google Scholar
Zargaryan, A., Farhoudi, N., Haworth, G., Ashby, J. F. & Au, S. H. Hybrid 3D printed-paper microfluidics. Sci. Rep. 10, 18379 (2020).
Google Scholar
Huang, H. & Densmore, D. Fluigi. ACM J. Emerg. Technol. Comput. Syst. 11, 1–19 (2014).
Google Scholar
Kim, S. J. et al. The bottom of the memory hierarchy: semiconductor and DNA data storage. MRS Bull. 48, 547–559 (2023).
Google Scholar
Ros, P. M., Miccoli, B., Sanginario, A. & Demarchi, D. Low-power architecture for integrated CMOS bio-sensing. In 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2017).
Perry, J. M., Soffer, G., Jain, R. & Shih, S. C. C. Expanding the limits towards ‘one-pot’ DNA assembly and transformation on a rapid-prototype microfluidic device. Lab Chip 21, 3730–3741 (2021).
Google Scholar
Ahrar, S., Raje, M., Lee, I. C. & Hui, E. E. Pneumatic computers for embedded control of microfluidics. Sci. Adv. 9, eadg0201 (2023).
Google Scholar
Iyer, V., Murali, P., Paredes, J., Liepmann, D. & Boser, B. Encapsulation of integrated circuits in plastic microfluidic systems using hot embossing. In 2015 Transducers — 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 1822–1825 (IEEE, 2015).
Gopinathan, K. A., Mishra, A., Mutlu, B. R., Edd, J. F. & Toner, M. A microfluidic transistor for automatic control of liquids. Nature 622, 735–741 (2023).
Google Scholar
Jang, B. & Hassibi, A. Biosensor systems in standard CMOS processes: fact or fiction? In 2008 IEEE International Symposium on Industrial Electronics 2045–2050 (IEEE, 2008).
Singh, R., Manickam, A. & Hassibi, A. CMOS biochips for hypothesis-driven DNA analysis. In 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings 484–487 (IEEE, 2014).
Olanrewaju, A., Beaugrand, M., Yafia, M. & Juncker, D. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18, 2323–2347 (2018).
Google Scholar
Li, J., Ha, N. S., ‘Leo’ Liu, T., van Dam, R. M. & Kim, C.-J. ‘C. J. ’ Ionic-surfactant-mediated electro-dewetting for digital microfluidics. Nature 572, 507–510 (2019).
Google Scholar
Pollack, M. G., Shenderov, A. D. & Fair, R. B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2, 96 (2002).
Moragues, T. et al. Droplet-based microfluidics. Nat. Rev. Methods Primers 3, 32 (2023).
Ding, Y., Howes, P. D. & deMello, A. J. Recent advances in droplet microfluidics. Anal. Chem. 92, 132–149 (2019).
Google Scholar
Lenshof, A. & Laurell, T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39, 1203–1217 (2010).
Google Scholar
Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002).
Google Scholar
Nielsen, J. B. et al. Microfluidics: innovations in materials and their fabrication and functionalization. Anal. Chem. 92, 150–168 (2019).
Google Scholar
Tsur, E. E. Computer-aided design of microfluidic circuits. Annu. Rev. Biomed. Eng. 22, 285–307 (2020).
Google Scholar
Sanka, R., Lippai, J., Samarasekera, D., Nemsick, S. & Densmore, D. 3DμF — interactive design environment for continuous flow microfluidic devices. Sci. Rep. 9, 9166 (2019).
Google Scholar
Squires, T. M. & Quake, S. R. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005).
Google Scholar
Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).
Google Scholar
Liu, Q. et al. A threshold-based bioluminescence detector with a CMOS-integrated photodiode array in 65 nm for a multi-diagnostic ingestible capsule. IEEE J. Solid-State Circuits 58, 838–851 (2023).
Google Scholar
Gregor, C., Gwosch, K. C., Sahl, S. J. & Hell, S. W. Strongly enhanced bacterial bioluminescence with the ilux operon for single-cell imaging. Proc. Natl Acad. Sci. USA 115, 962–967 (2018).
Google Scholar
Ying, D. & Hall, D. A. Current sensing front-ends: a review and design guidance. IEEE Sens. J. 21, 22329–22346 (2021).
Google Scholar
Mulleti, S., Bhandari, A. & Eldar, Y. C. Power-aware analog to digital converters. In Applied and Numerical Harmonic Analysis 415–452 (Birkhäuser, 2023).
Yasar, A. & Yazicigil, R. T. Physical-layer security for energy-constrained integrated systems: challenges and design perspectives. IEEE Open J. Solid-State Circuits Soc. 3, 262–273 (2023).
Google Scholar
De la Paz, E. et al. A self-powered ingestible wireless biosensing system for real-time in situ monitoring of gastrointestinal tract metabolites. Nat. Commun. 13, 7405 (2022).
Google Scholar
Chandrakasan, A. P., Verma, N. & Daly, D. C. Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 10, 247–274 (2008).
Google Scholar
Mercier, P. P., Lysaght, A. C., Bandyopadhyay, S., Chandrakasan, A. P. & Stankovic, K. M. Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30, 1240–1243 (2012).
Google Scholar
Wang, A., Highsmith Calhoun, B., & Chandrakasan, A. P. Sub-threshold design for ultra low-power systems. In Series on Integrated Circuits and Systems (Springer, 2006).
Farrar, J. T., Berkley, C. & Zworykin, V. K. Telemetering of intraenteric pressure in man by an externally energized wireless capsule. Science 131, 1814 (1960).
Google Scholar
Yeknami, A. F. et al. A 0.3-V CMOS biofuel-cell-powered wireless glucose/lactate biosensing system. IEEE J. Solid-State Circuits 53, 3126–3139 (2018).
Google Scholar
Dong, K. et al. Microbial fuel cell as power supply for implantable medical devices: a novel configuration design for simulating colonic environment. Biosens. Bioelectron. 41, 916–919 (2013).
Google Scholar
El-Damak, D. & Chandrakasan, A. P. Solar energy harvesting system with integrated battery management and startup using single inductor and 3.2nW quiescent power. In 2015 Symposium on VLSI Circuits (VLSI Circuits) C280–C281 (IEEE, 2015).
Kadirvel, K. et al. A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting. In 2012 IEEE International Solid-State Circuits Conference – (ISSCC) 106–108 (IEEE, 2012).
Ramadass, Y. K. & Chandrakasan, A. P. A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage. In 2010 IEEE International Solid-State Circuits Conference — (ISSCC) 486–487 (IEEE, 2010).
Dagdeviren, C. et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl Acad. Sci. USA 111, 1927–1932 (2014).
Google Scholar
Sadat Mousavi, P. et al. A multiplexed, electrochemical interface for gene-circuit-based sensors. Nat. Chem. 12, 48–55 (2019).
Google Scholar
Amalfitano, E. et al. A glucose meter interface for point-of-care gene circuit-based diagnostics. Nat. Commun. 12, 724 (2021).
Google Scholar
Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra‐thin flexible encapsulating materials for soft bio‐integrated electronics. Adv. Sci. 9, e2202980 (2022).
Google Scholar
Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).
Google Scholar
Iyer, V., Issadore, D. A. & Aflatouni, F. The next generation of hybrid microfluidic/integrated circuit chips: recent and upcoming advances in high-speed, high-throughput, and multifunctional lab-on-IC systems. Lab Chip 23, 2553–2576 (2023).
Google Scholar
McClune, C. J., Alvarez-Buylla, A., Voigt, C. A. & Laub, M. T. Engineering orthogonal signalling pathways reveals the sparse occupancy of sequence space. Nature 574, 702–706 (2019).
Google Scholar
Du, P. et al. De novo design of an intercellular signaling toolbox for multi-channel cell–cell communication and biological computation. Nat. Commun. 11, 4226 (2020).
Google Scholar
Marken, J. P. & Murray, R. M. Addressable and adaptable intercellular communication via DNA messaging. Nat. Commun. 14, 2358 (2023).
Google Scholar
Sexton, J. T. & Tabor, J. J. Multiplexing cell–cell communication. Mol. Syst. Biol. 16, e9618 (2020).
Google Scholar
LaFleur, T. L., Hossain, A. & Salis, H. M. Automated model-predictive design of synthetic promoters to control transcriptional profiles in bacteria. Nat. Commun. 13, 5159 (2022).
Google Scholar
Sun, M. G. F., Seo, M.-H., Nim, S., Corbi-Verge, C. & Kim, P. M. Protein engineering by highly parallel screening of computationally designed variants. Sci. Adv. 2, e1600692 (2016).
Google Scholar
Roehner, N. et al. GOLDBAR: a framework for combinatorial biological design. ACS Synth. Biol. 13, 2899–2911 (2024).
Google Scholar
Naseri, G. & Koffas, M. A. G. Application of combinatorial optimization strategies in synthetic biology. Nat. Commun. 11, 2446 (2020).
Google Scholar
Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).
Google Scholar
Castle, S. D., Stock, M. & Gorochowski, T. E. Engineering is evolution: a perspective on design processes to engineer biology. Nat. Commun. 15, 3640 (2024).
Google Scholar
Oliveira, S. M. D. & Densmore, D. Hardware, software, and wetware codesign environment for synthetic biology. Biodes. Res. 2022, 9794510 (2022).
Yazicigil, R. T. et al. Beyond crypto: physical-layer security for internet of things devices. IEEE Solid-State Circuits Mag. 12, 66–78 (2020).
Google Scholar
Vakhter, V., Soysal, B., Schaumont, P. & Guler, U. Threat modeling and risk analysis for miniaturized wireless biomedical devices. IEEE Internet Things J. 9, 13338–13352 (2022).
Vatambeti, R. et al. Prediction of DDoS attacks in Agriculture 4.0 with the help of prairie dog optimization algorithm with IDSNet. Sci. Rep. 13, 15371 (2023).
Google Scholar
Maraveas, C., Rajarajan, M., Arvanitis, K. G. & Vatsanidou, A. Cybersecurity threats and mitigation measures in Agriculture 4.0 and 5.0. Smart Agric. Technol. 9, 100616 (2024).
Rettore de Araujo Zanella, A., da Silva, E. & Pessoa Albini, L. C. Security challenges to smart agriculture: current state, key issues, and future directions. Array 8, 100048 (2020).
Google Scholar