World News

Transitive prediction of small-molecule function through alignment of high-content screening resources

https://www.profitableratecpm.com/f4ffsdxe?key=39b1ebce72f3758345b2155c98e6709c
  • Kirkpatrick, P. & Ellis, C. Chemical space. Nature 432, 823–824 (2004).

    Article 
    CAS 

    Google Scholar 

  • Reymond, J.-L. The chemical space project. Acc. Chem. Res. 48, 722–730 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • von Lilienfeld, O. A., Müller, K.-R. & Tkatchenko, A. Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4, 347–358 (2020).

    Article 

    Google Scholar 

  • Mullard, A. The drug-maker’s guide to the galaxy. Nature 549, 445–447 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22, 496–520 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, C. et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat. Commun. 9, 4307 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Readhead, B. et al. Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat. Commun. 9, 4412 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burbaum, J. & Tobal, G. M. Proteomics in drug discovery. Curr. Opin. Chem. Biol. 6, 427–433 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meissner, F., Geddes-McAlister, J., Mann, M. & Bantscheff, M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat. Rev. Drug Discov. 21, 637–654 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sleno, L. & Emili, A. Proteomic methods for drug target discovery. Curr. Opin. Chem. Biol. 12, 46–54 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agarwal, P., Huckle, J., Newman, J. & Reid, D. L. Trends in small molecule drug properties: a developability molecule assessment perspective. Drug Discov. Today 27, 103366 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swamidass, S. J. Mining small-molecule screens to repurpose drugs. Brief. Bioinform. 12, 327–335 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314–1325 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carpenter, A. E. Image-based chemical screening. Nat. Chem. Biol. 3, 461–465 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Way, G. P., Sailem, H., Shave, S., Kasprowicz, R. & Carragher, N. O. Evolution and impact of high content imaging. SLAS Discov. 28, 292–305 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitchison, T. J. Small‐molecule screening and profiling by using automated microscopy. ChemBioChem 6, 33–39 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheeder, C., Heigwer, F. & Boutros, M. Machine learning and image-based profiling in drug discovery. Curr. Opin. Syst. Biol. 10, 43–52 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swedlow, J. R. Innovation in biological microscopy: current status and future directions. Bioessays 34, 333–340 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, S. J. et al. Applying deep neural network analysis to high-content image-based assays. SLAS Discov. 24, 829–841 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spitzer, H., Berry, S., Donoghoe, M., Pelkmans, L. & Theis, F. J. Learning consistent subcellular landmarks to quantify changes in multiplexed protein maps. Nat. Methods 20, 1058–1069 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Slack, M. D., Martinez, E. D., Wu, L. F. & Altschuler, S. J. Characterizing heterogeneous cellular responses to perturbations. Proc. Natl Acad. Sci. USA 105, 19306–19311 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loo, L.-H. et al. An approach for extensibly profiling the molecular states of cellular subpopulations. Nat. Methods 6, 759–765 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bougen‐Zhukov, N., Loh, S. Y., Lee, H. K. & Loo, L. H. Large‐scale image‐based screening and profiling of cellular phenotypes. Cytometry A 91, 115–125 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bray, M.-A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bray, M.-A. et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. GigaScience 6, 1–5 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haghighi, M., Caicedo, J. C., Cimini, B. A., Carpenter, A. E. & Singh, S. High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations. Nat. Methods 19, 1550–1557 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Georgi, F. et al. A high-content image-based drug screen of clinical compounds against cell transmission of adenovirus. Sci. Data 7, 265 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siqueira-Neto, J. L. et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl. Trop. Dis. 6, e1671 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peppard, J. et al. Identifying small molecules which inhibit autophagy: a phenotypic screen using image-based high-content cell analysis. Curr. Chem. Genom. Transl. Med. 8, 3 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hale, C. M. et al. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy 12, 713–726 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandrasekaran, S. N. et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.534023 (2023).

  • Young, D. W. et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat. Chem. Biol. 4, 59–68 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Groot, R., Lüthi, J., Lindsay, H., Holtackers, R. & Pelkmans, L. Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR–Cas9 gene perturbation screens. Mol. Syst. Biol. 14, e8064 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tromans‐Coia, C. et al. Assessing the performance of the Cell Painting assay across different imaging systems. Cytometry A 103, 915–926 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shariff, A., Kangas, J., Coelho, L. P., Quinn, S. & Murphy, R. F. Automated image analysis for high-content screening and analysis. J. Biomol. Screen. 15, 726–734 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Krentzel, D., Shorte, S. L. & Zimmer, C. Deep learning in image-based phenotypic drug discovery. Trends Cell Biol. 33, 538–554 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Radford, A. et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning (eds Meila, M. & Zhang, T.) (PMLR, 2021).

  • Schoenauer-Sebag, A. et al. Multi-domain adversarial learning. In Proc. 7th International Conference on Learning Representations (ICLR, 2019).

  • Yu, M. et al. Deep learning large-scale drug discovery and repurposing. Nat. Comput. Sci. 4, 600–614 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, B. Canonical Correlation Analysis: Uses and Interpretation 1st edn (Sage, 1984).

  • Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghazanfar, S., Guibentif, C. & Marioni, J. C. Stabilized mosaic single-cell data integration using unshared features. Nat. Biotechnol. 42, 284–292 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 2, 183–197 (1991).

    Article 

    Google Scholar 

  • Verdú, S. Total variation distance and the distribution of relative information. In 2014 IEEE Information Theory and Applications Workshop (IEEE, 2014).

  • Heinrich, L., Kumbier, K., Li, L., Altschuler, S. J. & Wu, L. F. Selection of optimal cell lines for high-content phenotypic screening. ACS Chem. Biol. 18, 679–685 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, J. et al. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34, 70–77 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ersahin, T., Tuncbag, N. & Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst. 11, 1946–1954 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morgensztern, D. & McLeod, H. L. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16, 797–803 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fay, M. M. et al. RxRx3: phenomics map of biology. Preprint at bioRxiv https://doi.org/10.1101/2023.02.07.527350 (2023).

  • Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat. Commun. 16, 2684 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. 3rd International Conference on Learning Representations (ICLR, 2015).

  • Heinrich, L., Kumbier, K., Li, L., Altschuler, S. & Wu, L. Selection of optimal cell lines for high-content phenotypic screening. Zenodo https://doi.org/10.5281/zenodo.7352486 (2025).

  • Bao, F. Datasets used in ‘Transitive prediction of small-molecule function through alignment of high-content screening resources’. figshare https://doi.org/10.6084/m9.figshare.29061038 (2025).

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button