Transitive prediction of small-molecule function through alignment of high-content screening resources

Kirkpatrick, P. & Ellis, C. Chemical space. Nature 432, 823–824 (2004).
Google Scholar
Reymond, J.-L. The chemical space project. Acc. Chem. Res. 48, 722–730 (2015).
Google Scholar
von Lilienfeld, O. A., Müller, K.-R. & Tkatchenko, A. Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4, 347–358 (2020).
Google Scholar
Mullard, A. The drug-maker’s guide to the galaxy. Nature 549, 445–447 (2017).
Google Scholar
Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2011).
Google Scholar
Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).
Google Scholar
Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22, 496–520 (2023).
Google Scholar
Ye, C. et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat. Commun. 9, 4307 (2018).
Google Scholar
Readhead, B. et al. Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nat. Commun. 9, 4412 (2018).
Google Scholar
Burbaum, J. & Tobal, G. M. Proteomics in drug discovery. Curr. Opin. Chem. Biol. 6, 427–433 (2002).
Google Scholar
Meissner, F., Geddes-McAlister, J., Mann, M. & Bantscheff, M. The emerging role of mass spectrometry-based proteomics in drug discovery. Nat. Rev. Drug Discov. 21, 637–654 (2022).
Google Scholar
Sleno, L. & Emili, A. Proteomic methods for drug target discovery. Curr. Opin. Chem. Biol. 12, 46–54 (2008).
Google Scholar
Hoelder, S., Clarke, P. A. & Workman, P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol. Oncol. 6, 155–176 (2012).
Google Scholar
Agarwal, P., Huckle, J., Newman, J. & Reid, D. L. Trends in small molecule drug properties: a developability molecule assessment perspective. Drug Discov. Today 27, 103366 (2022).
Google Scholar
Swamidass, S. J. Mining small-molecule screens to repurpose drugs. Brief. Bioinform. 12, 327–335 (2011).
Google Scholar
Perlman, Z. E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).
Google Scholar
Boutros, M., Heigwer, F. & Laufer, C. Microscopy-based high-content screening. Cell 163, 1314–1325 (2015).
Google Scholar
Carpenter, A. E. Image-based chemical screening. Nat. Chem. Biol. 3, 461–465 (2007).
Google Scholar
Way, G. P., Sailem, H., Shave, S., Kasprowicz, R. & Carragher, N. O. Evolution and impact of high content imaging. SLAS Discov. 28, 292–305 (2023).
Google Scholar
Mitchison, T. J. Small‐molecule screening and profiling by using automated microscopy. ChemBioChem 6, 33–39 (2005).
Google Scholar
Scheeder, C., Heigwer, F. & Boutros, M. Machine learning and image-based profiling in drug discovery. Curr. Opin. Syst. Biol. 10, 43–52 (2018).
Google Scholar
Swedlow, J. R. Innovation in biological microscopy: current status and future directions. Bioessays 34, 333–340 (2012).
Google Scholar
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
Google Scholar
Yang, S. J. et al. Applying deep neural network analysis to high-content image-based assays. SLAS Discov. 24, 829–841 (2019).
Google Scholar
Spitzer, H., Berry, S., Donoghoe, M., Pelkmans, L. & Theis, F. J. Learning consistent subcellular landmarks to quantify changes in multiplexed protein maps. Nat. Methods 20, 1058–1069 (2023).
Google Scholar
Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018).
Google Scholar
Slack, M. D., Martinez, E. D., Wu, L. F. & Altschuler, S. J. Characterizing heterogeneous cellular responses to perturbations. Proc. Natl Acad. Sci. USA 105, 19306–19311 (2008).
Google Scholar
Loo, L.-H. et al. An approach for extensibly profiling the molecular states of cellular subpopulations. Nat. Methods 6, 759–765 (2009).
Google Scholar
Bougen‐Zhukov, N., Loh, S. Y., Lee, H. K. & Loo, L. H. Large‐scale image‐based screening and profiling of cellular phenotypes. Cytometry A 91, 115–125 (2017).
Google Scholar
Bray, M.-A. et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11, 1757–1774 (2016).
Google Scholar
Bray, M.-A. et al. A dataset of images and morphological profiles of 30 000 small-molecule treatments using the Cell Painting assay. GigaScience 6, 1–5 (2017).
Google Scholar
Haghighi, M., Caicedo, J. C., Cimini, B. A., Carpenter, A. E. & Singh, S. High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations. Nat. Methods 19, 1550–1557 (2022).
Google Scholar
Georgi, F. et al. A high-content image-based drug screen of clinical compounds against cell transmission of adenovirus. Sci. Data 7, 265 (2020).
Google Scholar
Siqueira-Neto, J. L. et al. An image-based high-content screening assay for compounds targeting intracellular Leishmania donovani amastigotes in human macrophages. PLoS Negl. Trop. Dis. 6, e1671 (2012).
Google Scholar
Peppard, J. et al. Identifying small molecules which inhibit autophagy: a phenotypic screen using image-based high-content cell analysis. Curr. Chem. Genom. Transl. Med. 8, 3 (2014).
Google Scholar
Hale, C. M. et al. Identification of modulators of autophagic flux in an image-based high content siRNA screen. Autophagy 12, 713–726 (2016).
Google Scholar
Chandrasekaran, S. N. et al. JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic perturbations. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.534023 (2023).
Young, D. W. et al. Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat. Chem. Biol. 4, 59–68 (2008).
Google Scholar
Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).
Google Scholar
de Groot, R., Lüthi, J., Lindsay, H., Holtackers, R. & Pelkmans, L. Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR–Cas9 gene perturbation screens. Mol. Syst. Biol. 14, e8064 (2018).
Google Scholar
Tromans‐Coia, C. et al. Assessing the performance of the Cell Painting assay across different imaging systems. Cytometry A 103, 915–926 (2023).
Google Scholar
Shariff, A., Kangas, J., Coelho, L. P., Quinn, S. & Murphy, R. F. Automated image analysis for high-content screening and analysis. J. Biomol. Screen. 15, 726–734 (2010).
Google Scholar
Krentzel, D., Shorte, S. L. & Zimmer, C. Deep learning in image-based phenotypic drug discovery. Trends Cell Biol. 33, 538–554 (2023).
Google Scholar
Radford, A. et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning (eds Meila, M. & Zhang, T.) (PMLR, 2021).
Schoenauer-Sebag, A. et al. Multi-domain adversarial learning. In Proc. 7th International Conference on Learning Representations (ICLR, 2019).
Yu, M. et al. Deep learning large-scale drug discovery and repurposing. Nat. Comput. Sci. 4, 600–614 (2024).
Google Scholar
Thompson, B. Canonical Correlation Analysis: Uses and Interpretation 1st edn (Sage, 1984).
Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).
Google Scholar
Ghazanfar, S., Guibentif, C. & Marioni, J. C. Stabilized mosaic single-cell data integration using unshared features. Nat. Biotechnol. 42, 284–292 (2024).
Google Scholar
Murtagh, F. Multilayer perceptrons for classification and regression. Neurocomputing 2, 183–197 (1991).
Google Scholar
Verdú, S. Total variation distance and the distribution of relative information. In 2014 IEEE Information Theory and Applications Workshop (IEEE, 2014).
Heinrich, L., Kumbier, K., Li, L., Altschuler, S. J. & Wu, L. F. Selection of optimal cell lines for high-content phenotypic screening. ACS Chem. Biol. 18, 679–685 (2023).
Google Scholar
Kang, J. et al. Improving drug discovery with high-content phenotypic screens by systematic selection of reporter cell lines. Nat. Biotechnol. 34, 70–77 (2016).
Google Scholar
Ersahin, T., Tuncbag, N. & Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst. 11, 1946–1954 (2015).
Google Scholar
Morgensztern, D. & McLeod, H. L. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 16, 797–803 (2005).
Google Scholar
Fay, M. M. et al. RxRx3: phenomics map of biology. Preprint at bioRxiv https://doi.org/10.1101/2023.02.07.527350 (2023).
Subramanian, A. et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 1437–1452 (2017).
Google Scholar
Li, L. et al. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat. Commun. 16, 2684 (2025).
Google Scholar
Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).
Google Scholar
Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).
Google Scholar
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc. 3rd International Conference on Learning Representations (ICLR, 2015).
Heinrich, L., Kumbier, K., Li, L., Altschuler, S. & Wu, L. Selection of optimal cell lines for high-content phenotypic screening. Zenodo https://doi.org/10.5281/zenodo.7352486 (2025).
Bao, F. Datasets used in ‘Transitive prediction of small-molecule function through alignment of high-content screening resources’. figshare https://doi.org/10.6084/m9.figshare.29061038 (2025).



