Unlocking gene regulatory networks for crop resilience and sustainable agriculture

  • Long, T. A., Brady, S. M. & Benfey, P. N. Systems approaches to identifying gene regulatory networks in plants. Annu. Rev. Cell Dev. Biol. 24, 81–103 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chai, L. E. et al. A review on the computational approaches for gene regulatory network construction. Comput. Biol. Med. 48, 55–65 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delgado, F. M. & Gómez-Vela, F. Computational methods for gene regulatory networks reconstruction and analysis: a review. Artif. Intell. Med. 95, 133–145 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Vijesh, N., Chakrabarti, S. K. & Sreekumar, J. Modeling of gene regulatory networks: a review. JBiSE 6, 223–231 (2013).

    Article 

    Google Scholar 

  • Alvarez, J. M., Brooks, M. D., Swift, J. & Coruzzi, G. M. Time-based systems biology approaches to capture and model dynamic gene regulatory networks. Annu. Rev. Plant Biol. 72, 105–131 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bechtold, U. et al. Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell 28, 345–366 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, H. et al. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc. Natl Acad. Sci. USA 111, 16337–16342 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rong, W. et al. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnol. J. 12, 468–479 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clough, E. & Barrett, T. The Gene Expression Omnibus database. Methods Mol. Biol. 1418, 93–110 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banf, M. & Rhee, S. Y. Computational inference of gene regulatory networks: approaches, limitations and opportunities. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 41–52 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gupta, O. P. et al. From gene to biomolecular networks: a review of evidences for understanding complex biological function in plants. Curr. Opin. Biotechnol. 74, 66–74 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Araújo, I. S. et al. Stochastic gene expression in Arabidopsis thaliana. Nat. Commun. 8, 2132 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mercatelli, D., Scalambra, L., Triboli, L., Ray, F. & Giorgi, F. M. Gene regulatory network inference resources: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194430 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kulkarni, S. R. & Vandepoele, K. Inference of plant gene regulatory networks using data-driven methods: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194447 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hecker, M., Lambeck, S., Toepfer, S., van Someren, E. & Guthke, R. Gene regulatory network inference: data integration in dynamic models—a review. BioSystems 96, 86–103 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, Y. & Huang, S. C. Improving plant gene regulatory network inference by integrative analysis of multi-omics and high resolution datasets. Curr. Opin. Syst. Biol. 22, 8–15 (2020).

    Article 

    Google Scholar 

  • Akers, K. & Murali, T. M. Gene regulatory network inference in single cell biology. Curr. Opin. Syst. Biol. 26, 87–97 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yuan, Q. & Duren, Z. Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data. Nat. Biotechnol. 43, 247–257 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Marku, M. & Pancaldi, V. From time-series transcriptomics to gene regulatory networks: a review on inference methods. PLoS Comput. Biol. 19, e1011254 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, M., He, W., Tang, J., Zou, Q. & Guo, F. A comprehensive overview and critical evaluation of gene regulatory network inference technologies. Brief. Bioinform. 22, bbab009 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Pušnik, Ž., Mraz, M., Zimic, N. & Moškon, M. Review and assessment of Boolean approaches for inference of gene regulatory networks. Heliyon 8, e10222 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perrin, B.-E. et al. Gene networks inference using dynamic Bayesian networks. Bioinformatics 19, ii138–ii148 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Mombaerts, L. et al. Dynamical differential expression (DyDE) reveals the period control mechanisms of the Arabidopsis circadian oscillator. PLoS Comput. Biol. 15, e1006674 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, J. et al. Causal network inference from gene transcriptional time-series response to glucocorticoids. PLoS Comput. Biol. 17, e1008223 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seeger, M. Gaussian processes for machine learning. Int. J. Neural Syst. 14, 69–106 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Huynh-Thu, V. A. & Geurts, P. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 8, 3384 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubiolo, M., Milone, D. H. & Stegmayer, G. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series. Bioinformatics 34, 1253–1260 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Talukder, A., Barham, C., Li, X. & Hu, H. Interpretation of deep learning in genomics and epigenomics. Brief. Bioinform. 22, bbaa17 (2021).

    Article 

    Google Scholar 

  • Hoang, N. V., Park, C., Kamran, M. & Lee, J.-Y. Gene regulatory network guided investigations and engineering of storage root development in root crops. Front. Plant Sci. 11, 762 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikeuchi, M. et al. A gene regulatory network for cellular reprogramming in plant regeneration. Plant Cell Physiol. 59, 765–777 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Pajoro, A. et al. The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. J. Exp. Bot. 65, 4731–4745 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tripathi, R. K. & Wilkins, O. Single cell gene regulatory networks in plants: opportunities for enhancing climate change stress resilience. Plant Cell Environ. 44, 2006–2017 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jones, D. M. & Vandepoele, K. Identification and evolution of gene regulatory networks: insights from comparative studies in plants. Curr. Opin. Plant Biol. 54, 42–48 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nolan, T. M. et al. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 379, eadf4721 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Redekar, N., Pilot, G., Raboy, V., Li, S. & Saghai Maroof, M. A. Inference of transcription regulatory network in low phytic acid soybean seeds. Front. Plant Sci. 8, 2029 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pink, H. et al. Identification of Lactuca sativa transcription factors impacting resistance to Botrytis cinerea through predictive network inference. Preprint at bioRxiv https://doi.org/10.1101/2023.07.19.549542 (2023).

  • Krouk, G., Lingeman, J., Colon, A. M., Coruzzi, G. & Shasha, D. Gene regulatory networks in plants: learning causality from time and perturbation. Genome Biol. 14, 123 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muhammad, D., Schmittling, S., Williams, C. & Long, T. A. More than meets the eye: emergent properties of transcription factors networks in Arabidopsis. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 64–74 (2017).

    Article 
    CAS 

    Google Scholar 

  • Varala, K. et al. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants. Proc. Natl Acad. Sci. USA 115, 6494–6499 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, P. et al. Meta gene regulatory networks in maize highlight functionally relevant regulatory interactions. Plant Cell 32, 1377–1396 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, L. M. et al. Differential effects of day/night cues and the circadian clock on the barley transcriptome. Plant Physiol. 183, 765–779 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkins, O. et al. Egrins (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. Plant Cell 28, 2365–2384 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reynoso, M. A. et al. Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice. Dev. Cell 57, 1177–1192 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aalto, A., Viitasaari, L., Ilmonen, P., Mombaerts, L. & Gonçalves, J. Gene regulatory network inference from sparsely sampled noisy data. Nat. Commun. 11, 3493 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ko, D. K. & Brandizzi, F. Network-based approaches for understanding gene regulation and function in plants. Plant J. 104, 302–317 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subbaroyan, A., Sil, P., Martin, O. C. & Samal, A. Leveraging developmental landscapes for model selection in Boolean gene regulatory networks. Brief. Bioinform. 24, bbad160 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Balcerowicz, M. et al. An early-morning gene network controlled by phytochromes and cryptochromes regulates photomorphogenesis pathways in Arabidopsis. Mol. Plant 14, 983–996 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henriet, C. et al. Proteomics of developing pea seeds reveals a complex antioxidant network underlying the response to sulfur deficiency and water stress. J. Exp. Bot. 72, 2611–2626 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Depuydt, T., De Rybel, B. & Vandepoele, K. Charting plant gene functions in the multi-omics and single-cell era. Trends Plant Sci. 28, 283–296 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cavill, R., Jennen, D., Kleinjans, J. & Briedé, J. J. Transcriptomic and metabolomic data integration. Brief. Bioinform. 17, 891–901 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Agamah, F. E. et al. Computational approaches for network-based integrative multi-omics analysis. Front. Mol. Biosci. 9, 967205 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, N. M. et al. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nat. Commun. 12, 5858 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Montes, C. et al. Integration of multi-omics data reveals interplay between brassinosteroid and target of rapamycin complex signaling in Arabidopsis. New Phytol. 236, 893–910 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, W. et al. A translatome–transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol. 24, 60 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, S. et al. PPGR: a comprehensive perennial plant genomes and regulation database. Nucleic Acids Res. 52, D1588–D1596 (2023).

    Article 
    PubMed Central 

    Google Scholar 

  • Kang, H. et al. TCOD: an integrated resource for tropical crops. Nucleic Acids Res. 52, D1651–D1660 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Lan, Y. et al. AtMAD: Arabidopsis thaliana multi-omics association database. Nucleic Acids Res. 49, D1445–D1451 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Yang, Z. et al. BnIR: a multi-omics database with various tools for Brassica napus research and breeding. Mol. Plant 16, 775–789 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, C. et al. Single-cell multi-omics in the medicinal plant Catharanthus roseus. Nat. Chem. Biol. 19, 1031–1041 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alemu, A. et al. Genomic selection in plant breeding: key factors shaping two decades of progress. Mol. Plant 17, 552–578 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schrag, T. A. et al. Beyond genomic prediction: combining different types of omics data can improve prediction of hybrid performance in maize. Genetics 208, 1373–1385 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, P.-Y. et al. Improvement of prediction ability by integrating multi-omic datasets in barley. BMC Genomics 23, 200 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, X., Xie, W., Wu, C. & Xu, S. A directed learning strategy integrating multiple omic data improves genomic prediction. Plant Biotechnol. J. 17, 2011–2020 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knoch, D. et al. Multi-omics-based prediction of hybrid performance in canola. Theor. Appl. Genet. 134, 1147–1165 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, H. et al. Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations. Theor. Appl. Genet. 134, 4043–4054 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, K. et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants. Mol. Plant 16, 279–293 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bhat, J. A. et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front. Genet. 7, 221 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasan, N., Choudhary, S., Naaz, N., Sharma, N. & Laskar, R. A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 19, 128 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, P. et al. Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542–3558 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lozano, R. et al. Comparative evolutionary genetics of deleterious load in sorghum and maize. Nat. Plants 7, 17–24 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. et al. Divergence in the ABA gene regulatory network underlies differential growth control. Nat. Plants 8, 549–560 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lü, P. et al. Genome encode analyses reveal the basis of convergent evolution of fleshy fruit ripening. Nat. Plants 4, 784–791 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hickman, R. et al. Architecture and dynamics of the jasmonic acid gene regulatory network. Plant Cell 29, 2086–2105 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamali, S. H., Cockram, J. & Hickey, L. T. Is plant variety registration keeping pace with speed breeding techniques? Euphytica 216, 131 (2020).

    Article 

    Google Scholar 

  • Wada, N., Ueta, R., Osakabe, Y. & Osakabe, K. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 20, 234 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, B., Sun, C., Li, J. & Gao, C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat. Rev. Genet. 25, 603–622 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mishra, R., Joshi, R. K. & Zhao, K. Base editing in crops: current advances, limitations and future implications. Plant Biotechnol. J. 18, 20–31 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Molla, K. A., Sretenovic, S., Bansal, K. C. & Qi, Y. Precise plant genome editing using base editors and prime editors. Nat. Plants 7, 1166–1187 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Plant base editing and prime editing: the current status and future perspectives. J. Integr. Plant Biol. 65, 444–467 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Pan, C., Sretenovic, S. & Qi, Y. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Curr. Opin. Plant Biol. 60, 101980 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jogam, P. et al. A review on CRISPR/Cas-based epigenetic regulation in plants. Int. J. Biol. Macromol. 219, 1261–1271 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat. Commun. 12, 1944 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kavuri, N. R., Ramasamy, M., Qi, Y. & Mandadi, K. Applications of CRISPR/Cas13-based RNA editing in plants. Cells 11, 2665 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wada, N., Osakabe, K. & Osakabe, Y. Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiol. 188, 1825–1837 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cassan, O. et al. A gene regulatory network in Arabidopsis roots reveals features and regulators of the plant response to elevated CO2. New Phytol. 239, 992–1004 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Y. et al. Decoding the gene regulatory network of endosperm differentiation in maize. Nat. Commun. 15, 34 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Rice co-expression network analysis identifies gene modules associated with agronomic traits. Plant Physiol. 190, 1526–1542 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnol. J. 18, 313–315 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Peng, A. et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15, 1509–1519 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, J. et al. Efficient protein tagging and cis-regulatory element engineering via precise and directional oligonucleotide-based targeted insertion in plants. Plant Cell 35, 2722–2735 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, O. X. & Ronald, P. C. Targeted DNA insertion in plants. Proc. Natl Acad. Sci. USA 118, e2004834117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, O. X. et al. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR–Cas9. Nat. Commun. 11, 1178 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Claeys, H. et al. Coordinated gene upregulation in maize through CRISPR/Cas-mediated enhancer insertion. Plant Biotechnol. J. 22, 16–18 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, C. et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vazquez-Vilar, M., Selma, S. & Orzaez, D. The design of synthetic gene circuits in plants: new components, old challenges. J. Exp. Bot. 74, 3791–3805 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brophy, J. A. N. et al. Synthetic genetic circuits as a means of reprogramming plant roots. Science 377, 747–751 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khan, M. A. et al. CRISPRi-based circuits to control gene expression in plants. Nat. Biotechnol. 43, 416–430 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Staub, J. E., Serquen, F. C. & Gupta, M. Genetic markers, map construction, and their application in plant breeding. HortScience 31, 729–741 (1996).

    Article 
    CAS 

    Google Scholar 

  • Pérez-de-Castro, A. M. et al. Application of genomic tools in plant breeding. Curr. Genomics 13, 179–195 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung, Y. S., Choi, S. C., Jun, T.-H. & Kim, C. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic. Environ. Biotechnol. 58, 425–431 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H. et al. QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol. Plant 12, 426–437 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Jamil, I. N. et al. Systematic multi-omics integration (MOI) approach in plant systems biology. Front. Plant Sci. 11, 944 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mounet, F. et al. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149, 1505–1528 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larriba, E., Nicolás-Albujer, M., Sánchez-García, A. B. & Pérez-Pérez, J. M. Identification of transcriptional networks involved in de novo organ formation in tomato hypocotyl explants. Int. J. Mol. Sci. 23, 16112 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sacco, A., Raiola, A., Calafiore, R., Barone, A. & Rigano, M. M. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genomics 20, 43 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hale, B. et al. Gene regulatory network inference in soybean upon infection by Phytophthora sojae. PLoS ONE 18, e0287590 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pradeepkumara, N. et al. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 114, 110273 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jaiswal, S. et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 8, 3382 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yi, F., Huo, M., Li, J. & Yu, J. Time-series transcriptomics reveals a drought-responsive temporal network and crosstalk between drought stress and the circadian clock in foxtail millet. Plant J. 110, 1213–1228 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaur, B. et al. Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: applications, challenges, and prospects. Plants 10, 1989 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Clercq, I. et al. Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nat. Plants 7, 500–513 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. Mol. Plant 16, 393–414 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, X. et al. Genomic investigation of 18,421 lines reveals the genetic architecture of rice. Science 385, eadm8762 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shrivastava, P. & Kumar, R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22, 123–131 (2015).

    CAS 

    Google Scholar 

  • Ruz, G. A., Timmermann, T. & Goles, E. Reconstruction of a GRN model of salt stress response in Arabidopsis using genetic algorithms. 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) 1–8 (2015).

  • Hu, J. et al. Time-series transcriptome comparison reveals the gene regulation network under salt stress in soybean (Glycine max) roots. BMC Plant Biol. 22, 157 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R. et al. Comparative analysis of salt responsive gene regulatory networks in rice and Arabidopsis. Comput. Biol. Chem. 85, 107188 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, B. et al. The transcriptional regulatory network of hormones and genes under salt stress in tomato plants (Solanum lycopersicum L.). Front. Plant Sci. 14, 1115593 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, W., Ren, Q., Chen, Y., Xu, G. & Qian, Y. Genome-wide identification and analysis of WRKY gene family in maize provide insights into regulatory network in response to abiotic stresses. BMC Plant Biol. 21, 427 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, L. et al. A transcription factor hierarchy defines an environmental stress response network. Science 354, aag1550 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ecker, J. & Song, L. Environmental stress response transcriptional regulatory network. US patent 20,180,112,228 (2018).

  • Tian, H. et al. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. Plant Cell Environ. 40, 2958–2971 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs. BMC Plant Biol. 21, 137 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, G. et al. CRISPR/Cas9 gene editing of NTAITRs, a family of transcription repressor genes, leads to enhanced drought tolerance in tobacco. Int. J. Mol. Sci. 23, 15268 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Front. Plant Sci. 12, 779598 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Evolution of AITR family genes in cotton and their functions in abiotic stress tolerance. Plant Biol. 23, 58–68 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gao, Y. et al. Diversity and redundancy of the ripening regulatory networks revealed by the fruitENCODE and the new CRISPR/Cas9 CNR and NOR mutants. Hortic. Res. 6, 39 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, J. et al. FvMYB79 positively regulates strawberry fruit softening via transcriptional activation of FvPME38. Int. J. Mol. Sci. 23, 101 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lakhwani, D. et al. Genome wide identification of MADS box gene family in Musa balbisiana and their divergence during evolution. Gene 836, 146666 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nobori, T. et al. A rare PRIMER cell state in plant immunity. Nature 638, 197–205 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, T. A. et al. A single-nucleus atlas of seed-to-seed development in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.533992 (2023).

  • Swift, J. et al. Exaptation of ancestral cell-identity networks enables C4 photosynthesis. Nature 636, 143–150 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrari, C., Manosalva Pérez, N. & Vandepoele, K. MINI-EX: integrative inference of single-cell gene regulatory networks in plants. Mol. Plant 15, 1807–1824 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Philips, T. Genetically modified organisms (GMOs): transgenic crops and recombinant DNA technology. Nat. Educ. 1, 213 (2008).

    Google Scholar 

  • Bawa, A. S. & Anilakumar, K. R. Genetically modified foods: safety, risks and public concerns—a review. J. Food Sci. Technol. 50, 1035–1046 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friedrichs, S. et al. Meeting report of the OECD conference on ‘Genome Editing: Applications in Agriculture—Implications for Health, Environment and Regulation’. Transgenic Res. 28, 419–463 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tian, Z., Wang, J.-W., Li, J. & Han, B. Designing future crops: challenges and strategies for sustainable agriculture. Plant J. 105, 1165–1178 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Turnbull, C., Lillemo, M. & Hvoslef-Eide, T. A. K. Global regulation of genetically modified crops amid the gene edited crop boom — a review. Front. Plant Sci. 12, 630396 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • European Parliament. 2023/0226(COD) — 24/04/2024 — Plants Obtained by Certain New Genomic Techniques and Their Food and Feed www.europarl.europa.eu/news/en/press-room/20240202IPR17320/new-genomic-techniques-meps-back-rules-to-support-green-transition-of-farmers (2024).

  • Mehta, D. EU proposal on CRISPR-edited crops is welcome — but not enough. Nature 619, 437 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vanderschuren, H., Chatukuta, P., Weigel, D. & Mehta, D. A new chance for genome editing in Europe. Nat. Biotechnol. 41, 1378–1380 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button